JUNE :- 2017, VOLUME -2, ISSUE-3 (ONLINE)

Research Genius Language Control Language Cont

Most Reffered & Peer Reviewed

Multi Disciplinary E Journal of Research

CHIEF EDITOR

DR. SUDHIR G. JOSHI

PRINCIPAL
SHREE H.S.SHAH COLLEGE OF COMMERCE
Modasa Dist-Arrvalli

Research Genius E Journal ISSN 2456-1002

Multi Disciplinary and Peer-Reviewed Research Journal in India

Chief Editor

Dr. Sudhir G. Joshi

Principal

Shree H.S.Shah College Of Commerce, Modasa Dist-Arrvalli

Associate Editors

Dr. Mohanlal K.Patel
ASSOCIATE PROFESSOR
H.O.D
Department Of Commerce
H.S.Shah College Of Commerce,
Modasa
Dist- Arryalli

Dr. Ilaben D.Sagar
ASSOCIATE PROFESSOR
H.O.D
Department Of Economics
H.S.Shah College Of Commerce,
Modasa
Dist- Arrvalli

Chief Executive Editor

Dr. Rajeshkumar A. Shrimali

Assistant Professor

Department of Commerce

Shree H.S.Shah College Of Commerce, Modasa Dist-Arrvalli

Executive Editors			
Prof. Gopalbhai Vankar Assistant Professor H.O.D Department of English Shree H.S.Shah College Of Commerce, Modasa Dist- Arrvalli	Dr. Anant Patel ASSISTANT PROFESSOR Department Of Physical Education Shree H.S.Shah College Of Commerce, Modasa Dist- Arrvalli		
Prof. Kamlesh Goswami ASSISTANT PROFESSOR Department Of commerce Shree H.S.Shah College Of Commerce, Modasa Dist- Arrvalli	Dr. Dhaval P. Dave Assistant Professor Department of Economics Shree H.S.Shah College Of Commerce, Modasa Dist- Arrvalli		

PUBLISHED BY

http://www.hsccresearchejournal.org/

HEAD QUARTER

Shree H.S.Shah College Of Commerce, Modasa Dist-Arrvalli

"Research Genius E Journal" is a Bi-Annual based Research Journal

Copy Right, JUNE- 2017, All Rights Reserved

- No part of this publication may be reproduced or copied in any form by any means without prior written permission
- "Research Genius E Journal" holds the copyright to all articles contributed in this
 publication. In case of reprinted articles "Research Genius E Journal" holds the
 copyright for the selection, sequence, introduction material, summaries and other
 value additions
- The view expressed in this publication are purely personal judgments of the authors
 and do not reflect the view of "Research Genius E Journal". The views expressed by
 external authors represent their personal views and not necessarily the views of the
 organizations they represent.
- All efforts are made to ensure that the published information is correct. "Research Genius E Journal" is not responsible for any errors caused due to oversight or otherwise.

ISSN 2456-1002

Editor's Column

The blast of knowledge at the universal hut due to scientific dynamics has without doubt redefined the very concept of new Era. The main set-up of education especially higher education-has become a subject of study and scrutiny for the scholars and practitioners who have a hunger desire to face change and challenges. It is because we, the creature beings, are

brilliant with the faculty of option and a liberated will.

Unlike other type, we are not planned. We can make choices and use our free will to act and get our objectives. Inequities in learning opportunities, quality of educational military

and level of learning success persist by gender, rural/town locality, ethnic backdrop, and

socioeconomic status.

The quality of education and the aptitude to define and monitor this quality is absent

in most upward countries. The means and span of education continue to be fine and curbed to

past models of delivery, and the use of other channels continues to be informal and

subsidiary. The increase in quantitative and qualitative demand for education is not in step by

an raise in funds.

At this point in time, it is safe to situation that the split of views on the risk of change

is marvelous. We, the publishers of Research Genius E Journal, are very much eager to view

some aspect of these changes through academic article contributed by impressive scholar and

social group. The nearby issue contains papers with decisive coming and scrutiny as well as

orderly argument and reflection on various theme of language, prose, information technology,

commerce and so on. We trust this will positively be helpful for the community who desire

transform.

Chief-Editor

Dr. Sudhir G. Joshi

Research Genius E Journal JUNE :- 2017, VOLUME-2, ISSUE-3

INDEX

Sr	. Title	Page
1.	આપણો રાષ્ટ્રધ્વજ- પ્રો.નવનીતલાલ વી.રાણા	1-9
2.	History of Modern Banking - Prof. Bhavin Shah	10-12
3.	Will the GST (Goods and Services Tax) be the Game Changer for the Indian Economy? Dr. Rajeshkumar A. Shrimali	13-15
4.	Improve Communication Skills of an Individu	ual- 16-18
₹	ઉચ્ચ શિક્ષણક્ષેત્રે મહાવિધાલયમાં ગ્રંથાલયની ભૂમિકા - મીનાકુમારી એન.રાઠોડ	19-24
6.	Review of different approaches of Bioremediation of chromiu very important heavy metal pollutant of soil and water - Ishita Patel ¹ Manisha Desai ²	am: a
7.	Contamination Of Toxic Metals In Nikol Lake, Ahmadabad, Gujarat, IndiaSanjay D.Vediya ¹ and Satish S. Patel ²	39-45

8. અંદાજપત્ર અને તેની મહત્વની જોગવાઇઓ

-ર્ડા. ધવલકુમાર પી દવે

46-47

9. આ વર્ષેનું બજેટ અને તેની ઉપર ર્નિભર દેશ

- રીના સી દવે

48-50

આપણો રાષ્ટ્રધ્વજ

પ્રો.નવનીતલાલ વી.રાણા આસી.પ્રોફેસર. ડી.એન.પી.આર્ટ્સ એન્ડ કોમર્સ કોલેજ, ડીસા

દરેક આઝાદ દેશને પોત પોતાના રાષ્ટ્રધ્વજ હોય છે. દરેક દેશ પ્રેમીઓ પોતાના ધ્વજ પ્રત્યે અપાર આદર રાખતા હોય છે. દરેક કુટુંબ, સમાજ કે દેશનું શ્રધ્ધાપ્રતિક એટલે તેનો રાષ્ટ્રધ્વજ છે. ધ્વજ તેના મુખ્ય, ભાગ સ્તંભ કે ઘર પર લગાડેલા કપડાના એક ટુકડા કરતાં ઘણું વિશેષ છે. રાષ્ટ્રધ્વજ માટે વર્ષોથી અનેક લોકોએ પોતાના જાનમાલની કુરબાની આપેલ હોય છે તેથીજ આ ધ્વજ કુટુંબ, કબિલા કે રાષ્ટ્રનું પ્રતિનિધિત્વ રજૂ કરે છે. દરેક દેશનો રાષ્ટ્રધ્વજ એ દેશ આઝાદ છે તેનો સંદેશો પાઠવે છે. આપણાં દેશનો રાષ્ટ્રધ્વજ તિરંગો એ આપણા દેશના ગૌરવની નિશાની છે. ઘણા વર્ષો સુધી સહન કરેલા પડકારો તથા સંઘર્ષો, યાતનાઓ વેઠીને ભારતને ગુલામીમાથી મુક્તિ અપાવનાર આઝાદીના ઘડવૈયા, રાજનેતા,સ્વાતંત્ર સેનાનીઓની જહેમત થકી આપણને મહામૂલી આઝાદી પ્રાપ્ત થઈ છે. આથીજ આઝાદીના પર્વની 15 મી ઓગષ્ટ (સ્વાતંત્ર પર્વ) તરીકે અને 26 મી જાન્યુઆરીની (પ્રજાસતાક પર્વ) તરીકે સમગ્ર દેશમાં ઉજવણી થાય છે.

આપણા રાષ્ટ્રીય ધ્વજના તિરંગા સુધી પહોંચવાની સફર પણ અત્યંત રોમાંચક છે. દેશનો રાષ્ટ્રીય ધ્વજ સ્વતંત્રતાના રાષ્ટ્રીય સંગ્રામ દરમિયાન શોધવામાં આવ્યો હતો.પરંતુ આજના ધ્વજના આ રૂપમાં પહોંચવા માટે તેમાં ઘણા પરીવર્તન કરવામાં આવ્યા હતા.

ભારતીય ધ્વજની કલ્પના અને ડિઝાઇન મછલીપટ્નમના ખેડૂત અને ભૂતપૂર્વ સૈનિક પિંગાલી વેંકૈયા (1876-1963) એ બનાવી હતી. દેશ ભક્તિના જોશમાં તેઓ 19 વર્ષની વયે બ્રિટિશ સૈન્યમાં જોડાયા હતા. આફ્રિકામાં એંગ્લો-બોઅર યુધ્ધમાં લડ્યા હતા. ત્યાં તેમની મુલાકાત ગાંધીજી સાથે થઈ હતી. બાદમાં તેઓ 50 કરતાં વધારે વર્ષ ગાંધીજી સાથે રહ્યા હતા. 31 માર્ચ 1921 ના રોજ કાકીનાડામાં કોંગ્રેસના અધિવેશનમાં વેંકૈયાએ રાષ્ટ્રીય ધ્વજ રજૂ કર્યો હતો. તેમાં કેસરી, લીલા રંગનો પટ્ટોજ હતો. લાલા હંસરાજે તેમાં અશોયક ઉમેર્યો હતો. બાદમાં ગાંધીજીએ તેમાં સફેદ પટ્ટી ઉમેરવાનું સ્થન કર્યું હતું. તેને 22 જુલાઇ 1947 ના રોજ તેની રાષ્ટ્રીય ધ્વજ તરીકે પસંદગી કરવામાં આવી હતી.

1924 માં કોંગ્રેસનું અધિવેશન કલકત્તામાં મળ્યું હતું. જેમાં ધ્વજના રંગો અને ડીઝાઇનની ચર્ચા થઈ અને જે તે વખતની રાજકીય સ્થિતિને ધ્યાને રાખી તમામ વર્ગોને સંતોષ થાય તે માટે કોંગ્રેસ કારોબારીની બેઠક બીજી એપ્રિલ 1931 માં કરાંચીમાં મળી અને તેમાં ધ્વજ સમિતિની રચના થઈ. જેમાં સાત સભ્યોની ધ્વજ સમિતિ બનાવવામાં આવી. 31 મી જુલાઇ 1931 સુધીમાં પોતાનો અહેવાલ સુપ્રત કરવા જણાવ્યુ હતું.

ધ્વજ સમિતિના સભ્યો:-

- 1. ડો. પદ્ાભિ સીતારામૈયા (કન્વીનર)
- 2. ડો. એન.એસ. હર્ડીકર
- 3. માસ્ટર તારાસિંહ
- 4. પંડીત જવાહરલાલ નહેરૂ
- 5. મૌલાના અબુ કલામ આઝાદ
- 6. દતાત્રેય બાલકૃષ્ણ
- 7. કાકા સાફેબ કાલેલકર

સ્વતંત્ર ભારતના રાષ્ટ્રધ્વજના રંગ, રૂપ, ડિઝાઇન, કદ વગેરે પર ચર્ચા કરી ચોગ્ય નિર્ણય લેવા સંદર્ભે એક ધ્વજ સમિતિ બની હતી તેમજ દેશની જરૂરિયાત, ભારતીયોની લાગણી અને ધ્વજ સમિતિના પરિશ્રમને ધ્યાનમાં રાખી કારોબારીએ એ.આઈ.સી..સી. (AICC) ને રાષ્ટ્રધ્વજમાં ફેરફારોની ભલામણ કરી.

- 1. રાષ્ટ્રધ્વજ ત્રણ કલરનો રહેશે.
- 2. રંગોની ગોઠવણી આડી રેખામાં રહેશે.
- 3. પ્રથમ કેસરી, વચ્ચે સફેદ અને છેલ્લે લીલો કલર રફેશે.
- 4. વચમાં સફેદ પદ્યમાં આછેરા વાદળી રંગનો ચરખો રહેશે.
- 5. રંગ કોમ/ધર્મનું પ્રતિનિધિત્વ કરવાને બદલે કેસરી કલર-"હિમત અને બલિદાન" એટલે કે દેશની તાકાતનું પ્રતિક છે. સફેદ કલર-" શાંતિ અને સત્ય" એટલે કે દેશની શાંતી, ત્યાગ અને સચ્યાઈનું પ્રતિક છે. જ્યારે લીલો કલર-"શ્રધ્ધા અને સૌર્ય " નું એટલે કે દેશની પ્રગતિનું પ્રતિક છે.
- 6. ધ્વજની વચ્ચે ઘેરા ભૂરા રંગનું અશોક ચક્ર "અશોકના શિલાલેખ" નું એટલે કે આમ જનતાના અરમાનો અને અપેક્ષાઓનું પ્રતિનિધિત્વનું પ્રતિક છે. જેમાં કુલ 24 આંકા છે જે 24 કલાકના દિવસનું પ્રતિક છે. આ ચક્ર સારનાથના સ્તૂપના અશોક સ્તંભ પરથી લેવામાં આવ્યું છે. બૌધ્ધ ધર્મ પ્રમાણે ચક્ર ધર્મ અને ન્યાયના પ્રતિક સમાન છે. તે ભારતની પ્રાચીન સંસ્કૃતિ, નાગરિકોનું કર્તવ્ય, ન્યાય તથા સત્યનું સંસ્મરણ કરાવે છે.

સ્વતંત્ર ભારતનો ધ્વજ :-

રાષ્ટ્રધ્વજની વર્તમાન ડિઝાઇન માદામ ભીખીજી કામાની છે. ગુજરાતનાં આ પારસીબાનું જ્યારે ફાંસમાં રહેતા હતા ત્યારે તેમણે પોતાના સહકાર્યકરો સાથે મળીને ત્રિરંગા ધ્વજની આ યોજના મૂર્તિમંત કરી હતી. ભારતના રાષ્ટ્રધ્વજ માટે એક એડહોક સમિતિ બનાવવામાં આવી. તેને ઘણી બેઠકો યોજી ગહન ચર્ચા-વિચારણા પછી 14 જુલાઇ 1947 ના રોજ નિર્ણયો લેવામાં આવ્યા.

- ભારતીય રાષ્ટ્રીય કોંગ્રેસના ધ્વજને રાષ્ટ્રધ્વજ તરીકે સ્વીકરવો જેમાં ભારતના તમામ વર્ગો અને રાજકીય પક્ષોને સ્વીકાર્ય બને તે માટે થોડા ફેરફારો કરવા.
- 2. ધ્વજ ત્રિરંગો હોવો જોઈએ. કલરના પદ્ય આડી રેખામાં, સૌથી ઉપર કેસરી, વચ્ચે સફેદ અને છેલ્લે ધેરો લીલો કલર હોય.
- 3. ધ્વજમાં કેતુ સ્થાને રેંટિયાને બદલે અશોકચક્રની આબેઠ્બ આકૃતી વચ્ચે સફેદ પદ્યમાં હોવી જોઈએ.

નહેરુ દ્વારા ધ્વજ સબંધી ઠરાવ:

ધ્વજના નમૂના બનાવી 2 જુલાઇ 1947 ના રોજ બંધારણ સભામાં રજૂ કરવામાં આવ્યો. પંડિત જવાહરલાલ નહેરુએ રાષ્ટ્રધ્વજ રજૂ કરવા સંબંધી ઠરાવ રજૂ કર્યો કે, " આથી ઠરાવવામાં આવે છે કે ભારતનો ધ્વજ કેસરી કલર, સફેદ કલર અને ઘેરા લીલા કલર એવા એક સરખા માપના ત્રણ આડા પદ્યનો ત્રિરંગો હશે. સફેદ પદ્યની મધ્યમાં ચરખાના પ્રતિક સ્થાને ચક્ર હશે. ચક્રની ડિઝાઇન અશોકના સારનાથના સિંહ સ્તંભ પરના ચક્રની જ રહેશે.

- ચક્રનો વ્યાસ સફેદ પદ્યાની પહોળાઈ જેટલો રહેશે.
- 💠 ધ્વજનું માપ 3:2 ના ગુણોત્તર લંબાઈ-પહોળાઈ રહેશે."

ભારતનો પ્રથમ જાહેર ધ્વજવંદન કાર્યક્રમ :-

આ કાર્ચક્રમ 15મી ઓગષ્ટ 1947 ના રોજ બપોરે પંડિત જવાહરલાલ નહેરુ એ ઈન્ડિયાગેટ પાસે પ્રિન્સેસપાર્કમાં રાષ્ટ્રધ્વજ લહેરાવીને કર્યો. યોગનું યોગ તે દિવસનું વાતાવરણ પલટાયેલું હતું. આકાશમાં મેઘધનુષ્ય દેખાયું અને હાજર મેદનીના મુખમાં ઉદગારો સરી પડ્યા કે, "ઇન્દ્ર ખુદ ત્રિરંગાને સલામ કરે છે." ધ્વજવંદનની વિધિમાં હિંદના અંતિમ બ્રિટિશ વાઈસરોય માઉન્ટ બેટન હાજર હતા. સમગ્ર કાર્યક્રમનો રિપોર્ટ બ્રિટનનાં તાજને મોકલ્યો જેમાં મેઘધનુષ્યનો પણ ઉલ્લેખ કરવામાં આવ્યો હતો.

રાષ્ટ્રધ્વજને ફરકાવવાના નિયમો :-

- 1. રાષ્ટ્રધ્વજનું માપ 3:2 પ્રમાણમાં હોવું જોઈએ એટલે કે પહોળાઈ જેટલી (1 ફૂટ) હોય એનાથી દોઢી (1.5 ફૂટ) લંબાઈ હોવી જોઈએ.
- 2. કાયદા મુજબ ધ્વજ ખાદીનો હોવો જોઈએ. અને તેને 9 જેટલી નિર્ધારીત સાઇઝમા જ બનાવી શકાય.
- રાષ્ટ્રધ્વજ ફરકે ત્યારે હમેશા કેસરી કલર હમેશા ઉપર હોવો જોઈએ.
- 4. રાષ્ટ્રધ્વજના સફેદ કલર વચ્ચે 24 કાપાવાળું ચક્ર ધ્વજની બંને બાજુ હોવું જોઈએ. એટલે કે તેની છાપ સ્પષ્ટ દેખાવી જોઈએ. ચક્રનો વ્યાસ સફેદ પદ્યાની પહોળાઈ જેટલો રહેશે તથા ચક્રનો રંગ ધેરો વાદળી કલર હોવો જોઈએ.
- 5. રાષ્ટ્ર ધ્વજ ફરકાવવા માથું ઢાંકેલું રાખવું. કોઈ વિશિષ્ટ વ્યક્તિ ઉધાડા માથે સલામી આપી શકે છે.

રાષ્ટ્રધ્વજ અંગે ધ્યાનમાં રાખવાની બાબતો.:-

આપણો રાષ્ટ્રધ્વજ એ આપણાં રાષ્ટ્રની આન, બાન અને શાનના પ્રતિક સમાન છે.

- > રાષ્ટ્રધ્વજને ગૌરવપૂર્ણ રીતે બીજા બધાથી અલગ તરી આવે અને સાફ દેખાય તે રીતે ફરકવવો જોઈએ.
- > રાષ્ટ્રધ્વજ એકદમ સ્વચ્છ હોવો જોઈએ.
- > અન્ય ધ્વજ રાષ્ટ્રધ્વજની જમણી બાજુએ કે તેનાથી વધુ ઊંચાઈએ ફરકાવી શકાય નહી.
- રેલી કે પરેડ વખતે રાષ્ટ્રધ્વજ ક્રય કરવાની જમણી બાજુએ રહે તેમ રાખવો.
- 🕨 મિલીટરી ગ્રૂપમાં રાષ્ટ્રધ્વજ હંમેશા નીચે રહે છે અને તેનાથી બે ડગલાં આગળ રહીને પરેડ થાય છે.
- > રાષ્ટ્રધ્વજને બીજા કોઈ ધ્વજ સાથે એકજ સ્તંભ પર ફરકાવી શકાય નહીં.
- > રાષ્ટ્રધ્વજનો ઉપયોગ ધંધાદારી हેતુથી કરી શકાય નહી.
- > રાષ્ટ્રધ્વજ ઉપર કોઈ પણ પ્રકારનું લખાણ લખી શકાય નહી.
- > રાષ્ટ્રધ્વજનો ઉપયોગ અધ્યક્ષની પાટલી કે મંચને ઢાંકવા માટે થઈ શકે નહીં.
- > રાજ્ય,રાષ્ટ્ર,લશ્કર અને કેન્દ્ર સરકારના અર્ધ લશ્કરીદળો તરફથી થતી અંત્યેષ્ટીમા ધ્વજ શબ પર ઢાંકવામાં આવે ત્યારે કેસરી કલર માથા તરફ રાખવામા આવશે. અગ્નિ સંસ્કાર કે કબરમાં દફન કરતાં પહેલા શબ ઉપરથી ધ્વજ પૂરતા સન્માન સાથે ખસેડી લેવામાં આવશે.
- 🕨 ધ્વજને ઈરાદા પૂર્વક જમીન અથવા ભોયતળિયે અડકવા તેમજ પાણીમાં અડકવા દેવાય નહી.
- રાષ્ટ્રીય પ્રસંગે કે સાંસ્કૃતિક અને ખેલકૂદ પ્રસંગોએ જાહેર જનતા કાગળ કે પ્લાસ્ટિકના બનેલ રાષ્ટ્રધ્વજ જમીન પર ફેંકી દેવાના બદલે તેના ગૌરવને ધ્યાનમાં લઈ ખાનગી રાહે તેનો નિકાલ કરવો જોઈએ.

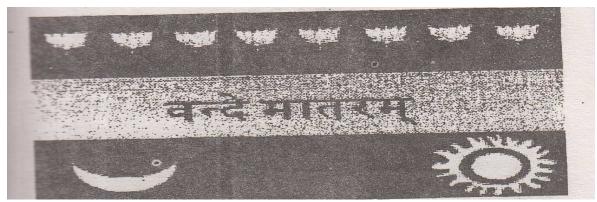
- સરકારે બહાર પાડેલ સ્યના અનુસાર ધ્વજ મકાન કે અન્ય સ્થળે અર્ધી કાઠીએ હોય તે સિવાય કોઈ વ્યક્તિ કે સંસ્થા થકી અર્ધી કાઠીએ ફરકાવી શકાય નહી.
- રાષ્ટ્રધ્વજનું અપમાન કરનારને યોગ્ય દંડ અને ત્રણ વર્ષ સુધીની કેદની સજા ફટકારવાની પણ જોગવાઈ છે.

ધ્વજ લહેવરાવાની / ફરકાવવાની રીત :-

- > રાષ્ટ્રધ્વજ બીજા બધાથી અલગ તરી આવે અને સાફ દેખાય તે રિતે ફરકવવો જોઈએ.
- » જાહેર ઇમારત, સરકારી કચેરીઓ પર ધ્વજ ફરકાવવાની પ્રથા છે. ત્યાં દરરોજ રવીવાર, રજા કે કોઈ પણ પ્રકારના હવામાનના બાધ સિવાય સૂર્યોદયથી સૂર્યાસ્ત સુધી નિયમિત ફરકાવવાનો રહેશે.
- ધ્વજ હંમેશા વિધિપૂર્વક તેમજ ધીમે ધીમે નીચે ઉતારવો જોઈએ.
- ધ્વજ આરોહણ અને અવરોહણની સાથે બ્યૂગલ વગાડવાની પ્રથા હોય તો બંને ક્રિયા બ્યૂગલ સાથેજ થવી જોઈએ..
- ધ્વજ જ્યારે આડા ગોઠવેલ દંડ પરથી કે ઝરૂખા, અગાસી કે મકાનના આગળના ભાગમાં ખૂણો બનાવીને ફરકાવ્યો હોય ત્યારે કેસરી કલરનો પટ્ટો દંડના છેક દૂરના છેડાં પર રહે તે રીતે ગોઠવવો જોઈએ.
- ધ્વજ દીવાલ પર ચોંટાડીને આડો દર્શાવવો હોય તો કેસરી પટ્ટો ઉપર આવવો જોઈએ. જો સીધો દર્શાવવો હોય તો કેસરી પટ્ટો ધ્વજમાં જમણી બાજુએ એટલે કે સામેથી જોનારની ડાબી બાજુ તરફ જ આવવો જોઈએ.
- રસ્તાની વચ્ચેના ભાગમાં ધ્વજ બતાવવો હોય અને પૂર્વ-પશ્ચિમ દિશા હોય તો કેસરી કલર પૂર્વ તરફ તેમજ જો ઉત્તર-દક્ષિણ દિશા હોય તો કેસરી કલર ઉત્તર તરફ જ હોવો જોઈએ.
- વક્તાના મંચ પર રાખવાનો હોય તો તેમની જમણી બાજુએ દંડ પર અથવા વકતાની પાછળની દીવાલ પર ઉપર તરફ સ્પષ્ટ જોઈ શકાય તે રીતે રાખવો.
- કોઈ પણ સંજોગોમાં ધ્વજનો ઉપયોગ પ્રતિમા કે સ્મારકના પડદા તરીકે થવો જોઈએ નહી.
- મોટર ગાડી પર ધ્વજ રાખવો હોય તો આગળના બોનેટના મધ્ય ભાગમાં, સજ્જડ રીતે બેસાડેલી દાંડી પર જે તે ગોઠવવો.
- ધ્વજને સરઘસ કે પરેડમાં લઈ જવાનો હોય તો ટુકડીની જમણી બાજુએ, જો અન્ય ધ્વજની કતાર હોય તો ધ્વજના મધ્યબિંદુશી આગળ રાષ્ટ્રધ્વજ રાખવા.
- ટ્રેઈન, વાઠન કે એરોપ્લેન જેવા કોઈ પણ વાઠન પર ઉપર કે આજુ બાજુમાં ધ્વજ ફરકાવી ન શકાય તે પણ અપરાધ છે.
- ધરમાં ત્રિરંગાની ડિઝાઇનના પડદા ન લગાવી શકો, એવી ડિઝાઇનના વસ્ત્રો ન પહેરી શકો. તેમ કરો તો ગંભીર ગુનો બને છે.

કોઈ પણ પાર્ટી કે પ્રસંગમાં તમે ત્રિરંગાના સિક્વન્સમાં ફૂલ ની સજાવટ કરો તો સજાપાત્ર ગુનો બને છે.

મોટર ગાડીઓ પર રાષ્ટ્ર ધ્વજ ફરકાવવાનો વિશેષાધિકાર :-

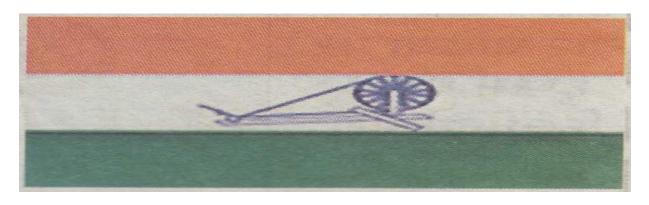

- ભારતના રાષ્ટ્રપતિ, ઉપરાષ્ટ્રપતિ
- રાજ્યના રાજયપાલ, ઉપરાજયપાલ
- 🕨 🧼 ભારતના એલચીઓ જે દેશમાં હોય ત્યાં
- 🕨 💎 વડા પ્રધાન અને પ્રધાન મંડળના સભ્યો.
- 🕨 🧼 લોકસભા-રાજ્યસભાના ડેપ્યુટી-સ્પીકર
- 🕨 રાજયોના વિધાન વિધાન પરિષદોના ચેરમેનો-ડેપ્યુટી ચેરમેનો
- 🕨 🧎 કેન્દ્ર શાસિત પ્રદેશો, રાજયોના વિધાનસભાના સ્પીકરો-ડેપ્યુટી સ્પીકરો.
- ભારતના સર્વોચ્ય ન્યાયમૂર્તી, સર્વોચ્ય વડી અદલતોના મુખ્ય ન્યાયમૂર્તિઓ.
 - > કોઈ વિદેશી મહાનુભાવોને ભારત સરકાર તરફથી આપેલ મોટરગાડીમાં પ્રવાસ કરતાં હોય ત્યારે જમણી બાજુએ રાષ્ટ્ર ધ્વજ અને ડાબી બાજુએ જે તે દેશનો ધ્વજ રહે એ રીતે રાષ્ટ્ર ધ્વજ ફરકવવો રહેશે. રાષ્ટ્ર ધ્વજને સલામી:-
 - > ધ્વજના આરોહણ અને અવરોહણ વખતે અથવા ધ્વજ પરેડમાં અથવા સલામી નિરીક્ષણ માટે પસાર થયો હોય ત્યારે ત્યાં હાજર હોય તે દરેક વ્યક્તિએ ધ્વજની સામે જોવું જોઈએ અને સાવધાનની મુદ્રામાં ઊભા રહેવું જોઈએ.
 - પ્રજાસતાક દિને રાષ્ટ્રપતિ પરેડ શરૂ થતાં પહેલા રાજ્યપથ પર ધ્વજ લહેરાવાય છે. આ સમયે ધ્વજને 21 તોપોની સલામી અપાય છે અને રાષ્ટ્રપ્રમુખ પણ ધ્વજને સલામ કરે છે તથા દર પાંચ સેકંડના સમયાંતરે તોપ ફ્રીડવામાં આવે છે. આ તમામ બાબતો એ બાબત સાફ દર્શાવે છે કે સ્વાતંત્ર્ય સર્વોપરી બાબત છે.

દેશના રાષ્ટ્રીય ધ્વજમાં આવેલા પરિવર્તનો :-

1. 1906 :- 7 મી ઓગષ્ટ 1906 ના રોજ પારસી બાગાન ચોક (ગ્રીન પાર્ક) કલકત્તામાં ફરકાવવામાં આવ્યો હતો. જેને હવે કોલકાત્તા કહેવામા આવે છે. સચિન્દ્ર પ્રસાદ બોઝ ધ્વજની ડિઝાઇનના પ્રણેતા સ્ત્રોત હતા. તેઓના અને અન્ય મહાનુભાવોના પ્રયત્નો એ પ્રેરણાથી તેઓએ બનાવેલ ધ્વજમાં ત્રણ પટ્ટીઓ લાલ, પીળા અને લીલા રંગની ક્ષિતિજ પટ્ટીઓથી બનાવાચો હતો. લાલ પટ્ટીઓમાં આઠ અર્ધ બિડાચેલા કવય હતા. વચ્ચેની પીળી પટ્ટી પર વાદળી અક્ષરે વંદે માતરમ લખ્યું હતું અને નીચેની લીલી પટ્ટી પર સ્રજ અને બીજના ચંદ્રની આફતિઓ સફેદ રંગમાં હતી. જે ભારતનો બિન સત્તાવાર ધ્વજ હતો.

2. 1907 :- 1907માં પેરિસમાં મેડમ કામા અને તેમની સાથે યૂંટાયેલા કેટલાક ક્રાંતિકારીઓ દ્વારા સ્ટ્રટગાર્ટની ઇન્ટરનેશનલ શોસ્યાલિસ્ટ કોંગ્રેસમાં ફરકાવાયો હતો.

3. 1917:- હોમરૂલની યળવળ દરમ્યાન ડો. એની બેસન્ટ અને લોકમાન્ય તિલકે ઘરેલુ શાસન આંદોલન દરમિયાન ફરકાવ્યો હતો. આ ધ્વજમાં પાંચ લાલ કલરની, ચાર લીલા કલરની આડી પટ્ટીઓ હતી. જેમાં ડાભી તરફ ઉપરના ભાગે યુનિયન જેક હતું. જમણી બાજુમાં ચંદ્રના બીજની આકૃતી તેમજ સાત તારાઓ સફેદ કલરમાં હતા. જમણી બાજુ ત્રિકોણ જેનો કાળો કલર હતો.



4. 1921:- અખિલ ભારતીય કોંગ્રેસ કમિટીના સત્ર દરમિયાન જે 1921 માં બેજવાડા (આજનું વિજયવાડા) માં ફરકાવ્યો હતો. અહી આંધ્ર પ્રદેશના એક યુવકે એક ઝંડો બનાવ્યો હતો અને ગાંધીજીને આપ્યો હતો.

તેમાં સૌથી ઉપર સફેદ પદ્યે, વચ્ચે લીલો પદ્યે અને સૌથી નીચે લાલ પદ્યે (કલર) નો આ ધ્વજ હિન્દુ અને મુસ્લિમ સમુદાયનું પ્રતિનિધિત્વ કરે છે જેમાં વચ્ચે ત્રણેય પદ્યમાં ચરખો હતો. ગાંધીજીએ આ ત્રિરંગો મંજૂર કરેલો હતો.

5. 1931 :- આ ધ્વજ ભારતીય રાષ્ટ્રીય સેનાનું સંગ્રામ ચિહ્ન પણ હતું. ત્રિરંગા ધ્વજને આપણી રાષ્ટ્રીય ધ્વજના રૂપમાં અપનાવવા માટે એક પ્રસ્તાવ પસાર કરાયો હતો. આમાં એજ ત્રણ રંગો છે જે આજના સમયમાં ત્રિરંગામાં છે.

6. 1947 :- 22 જુલાઇ 1947 ના રોજ બંધારણસભાએ તેને ભારતીય રાષ્ટ્રીય ધ્વજના રૂપમાં અપનાવ્યો હતો. ફક્ત તેમાં યાલતા યરખાને સ્થાને સમાટ અશોકના ધર્મ યક્રને દેખાડવામાં આવ્યું છે.

"મેરા ભારત મહાન"

"કુછ નશા તિરંગે કી આન કા હૈ, કુછ નશા માતૃભૂમિ કી શાન કા હૈ;

હમ લહરાચેંગે હર જગહ ચે તિરંગા, નશા ચે હિન્દુસ્તાન કી શાન કા હૈ."

"જય હિન્દ"

History of Modern Banking Prof. Bhavin Shah

Head Of The Department in Commerce

Gujarat Arts & Commerce College, Ellisbridge, Ahmedabad

Banking in old times was not the tightly monitored and tightly regulated business that it is today. Instead, earlier banking was completely a free market operation. Any entrepreneur could enter and exit the banking business without any restriction or licenses. **In this article, we will trace the evolution of banking** i.e. how banking changed to be the highly regulated business that it is today

Goldsmiths to Moneylenders

The banking profession, in the strictest sense of the word, was first carried on by goldsmiths in medieval Europe. Since, it was the business of the goldsmith to deal with valuable commodities the goldsmith would build strong vaults to protect their inventory from theft. The residents of the town wanted to rent the goldsmiths secure vault in order to keep their money safe. The goldsmith therefore started taking deposits and this was in a way the birth of modern banking.

Over a period of time, the goldsmiths realized that the deposits are usually far in excess of the withdrawals. This meant that if 100 gold coins were deposited with the goldsmith, statistically only 10 of them would be withdrawn at any given time. Therefore, the goldsmiths started lending out the money that they had held on deposit even though it did not belong to them! This was the birth of the second major function of modern banking i.e. lending money.

Taking deposits and making loans together changed the nature of the goldsmith's business to money lending. Over a period of time, this would further evolve and become banking.

Unregulated Era

The modern era saw money lending transform into banking. Taking deposits and making loans out of deposits was now the usual business of institutions now called banks. Also, the depositors did not have to pay a fee to the banker to safeguard their gold in his secure vault. Instead they received compensation in the form of interest to park their excess gold with the bankers.

This was the era of unregulated banks. Banking during this era was entrepreneurial in nature. Therefore, anyone who wanted to could set up a bank and enter the business. There were no licenses required and there was no regulation. This era continued till the 1600's. By then banking had become big business and some of the famous bankers like the Medici family and the Rothschild family were considered to be more powerful than kings!

Issuance of Private Bank Notes

As banking evolved over time, people realized that carrying large amounts of gold over long distances was unsafe as well as inconvenient. The radius of trade and commerce began to spread far and wide and carrying money over long distances became necessary. This was the birth of bank notes. Private Banks would issue private bank notes. The notes were nothing but a receipt for gold that had been deposited at the bank and could be withdrawn if the receipt was presented. Some of these notes were bearer notes i.e. the gold would be paid out to whoever brought in the note to the bank. This was the beginning of what we today refer to as fiat money!

At one point in time, there were over 30,000 different types of private bank notes in circulation in the United States. Needless to say that this created tremendous confusion and as a result special books had to be published. These books would specify the authenticity and the value of different bank notes and how safe was it to accept such notes as payments.

Emergence of Central Banks

The era of unregulated banking can also be considered to be the era of unscrupulous banking. Many fly-by-night banks came into existence during this period. Some of these banks were called "wildcat banks" and they fleeced entire towns and cities of their savings. In order to bring an order to this chaos and prevent the honest banks from losing business, central banks came into existence.

Central banks were banks created by special charter by the government. They would act as a banker to the government. Also, they would be responsible for the proper functioning of the other banks within their domain. This is when licenses became a requirement for banking business. However, Central banks are largely a 20th Century phenomenon. Many countries did not have a Central Bank till the late 1890's. Many critics believed that Central Banking was one of the tenets of socialism and that somehow the markets must always be free. However, Central Banks are omnipresent in the modern world. It is downright impossible to find a country without a central bank today.

Fractional Reserve Banking

Another important development in the modern banking system is the fractional reserve system. This means that bankers only need to keep a fraction of the funds on deposit. Therefore, if a bank receives \$100 as deposit, it needs to maintain, let's say \$10 as deposit and the rest can be used for lending. This \$10 amount is set by the Central Bank and periodically varied to increase and decrease the money supply as required.

Earlier, a certain amount of gold had to be held on deposit. However, nowadays bank notes themselves form the reserves based on which more bank notes are issued. Some banks have excess reserves whereas others are deficient in their reserves. As a result of this, reserves are traded in interbank markets. These markets will be explained later in this module.

Therefore, the banking business has undergone tremendous changes in the course of time. The basic nature of the business has drastically changed from safekeeping to full reserve money lending to the modern day fractional reserve banking.

Will the GST (Goods and Services Tax) be the Game-Changer for the Indian Economy?

- Dr. Rajeshkumar A. Shrimali

Assistant Professor Shree H.S.Shah College of Commerce, Modasa

All Hail the Game-Changing GST

On July 1, 2017, the Indian Government brought forward the GST (Goods and Services Tax) for implementation on a nationwide basis. This tax, which had to be passed through parliament with a constitutional amendment has been much celebrated and hyped for its game changing attributes.

This can be seen in the government went to the extent of likening it to a second independence which can be seen in the way the tax was rolled out in the Central Hall of Parliament at the stroke of midnight.

While the "optics" and the "symbolism" might very well be intended to score political points, there is no gainsaying the fact that the GST, if implemented and monitored in addition to being accepted by the nation, does indeed have the potential to be a game changer for the Indian Economy.

Indeed, many economists have predicted that it would lead to a 2% increase in GDP (Gross Domestic Product) in addition to widening the tax net thereby bringing in Millions of Small Traders and Businesspersons who were hitherto out of the taxpayer bracket and in the process, increasing the tax revenues.

What is the GST and what it seeks to remedy?

So, what exactly is the GST and why has it been hailed by many including the principal opposition who were earlier the party in power and had first mooted the tax reform?

To understand what GST is, we must first analyze the situation that was prevalent until now and for this, let us delve into some real world impacts. If you have ever traveled by a National Highway or even a State Highway, you might have noticed a long queue of trucks and other heavy vehicles carrying goods at the state borders waiting for the government officials to scrutinize the paperwork that they have and to let them into the state.

This is because earlier, each state had taxes on goods and services that varied from region to region and from state to state and hence, at the state borders, the taxes had to be adjusted accordingly for such goods which were being transported interstate.

Needless to say, this process while time-consuming and encouraging corruption also had the effect of deterring improvements in logistics and transport as businesses would not have to factor in delays on account of the waiting at the state borders into their costs of business.

Indeed, if you ask any businessperson who has ever sold goods in multiple states, they would recount horror stories about how their goods had to wait for a day or more (in some cases, two full days) for the rationalization of the taxes between states.

Also, with differential taxation, manufacturers had to incur substantial costs for the reasons above and this meant that they were more likely to disperse their operations instead of manufacturing their products in cost effective locations.

Lastly, it is a known fact that corruption was rampant due to this differential taxation which led to heartburn for the businesses.

How Does the GST Help?

The GST, by ensuring a uniform and nationwide tax rate for each category of products (we will return to this aspect later) and goods and services have done away with the need for differential taxation between states as well removed the need for delays and other costs of business (off the books). In addition, it ensures that goods and services are taxed at each step of the value chain, and the final price would reflect most of these savings thereby benefiting the end user or the consumer.

Further, the GST by ensuring that small businesses and all businesses for that matter enter the taxpayer base would increase the number of taxpayers exponentially thereby increasing the tax revenues for the governments.

Moreover, the GST would enable goods to be manufactured anywhere meaning that businesses can move their plants to cost-effective locations and transport the products nationwide thereby benefiting them (again, we will revisit this point).

Lastly, the GST would also eliminate corruption and boost the businesses since they can save on this expense.

Some Concerns

Having said that, there are some shortcomings of the GST. As mentioned in the previous section, first, the fact that there is no ONE tax rate or tax slab for all goods and services, and instead, there are various rates for each category has been cited as a shortcoming with some critics even saying that it would make a "mockery" of the whole process since one set of complexities have been replaced by another set of complexities.

In addition, with a uniform tax for each product nationwide, the states that consume more would benefit than the states that produce more as the former would benefit from lower prices without sharing the burden of the costs incurred.

To explain, suppose a particular state produces little but consumes more, the consumers in that state benefit from a single tax without having to bear the costs of contributing to the manufacture of that good or service.

Third, while the Act provides for the states losing out thus to be compensated, it is not yet clear as to how this would work out say, a few months or years down the line.

Wait for the Impact

Indeed, the last point is the most important as these are early days for the GST and much would depend on how well it is implemented and monitored as well as regulated.

In addition, much would also depend on the willingness of the traders and businesspersons in contributing to the success of the act.

To conclude, GST can indeed be the game changer for the Indian Economy if it is implemented and accepted rationally and thoughtfully.

Improve Communication Skills of an Individual Parvani R. Sharma

Shri M.B.PATEL SCIENCE COLLEGE, ANAND

An individual might have an extremely pleasing personality, in depth knowledge of the subject, a good and a very strong network but if he doesn't have effective communication skills, he fails to prove his worth and his charm and talent go simply unnoticed. A person without effective communication skills will never be able to carve his niche in this fierce competitive world.

Not every individual is born with good communication skills; it is inherited in due course of time as the individual passes through the various stages of life. Communication skill is an art which has to be mastered to make one's presence feel, stand apart from the crowd and emerge as a strong leader in all facets of life.

Let us find out some easy steps which an individual can follow to improve communication skills.

- There is no magic stick which can improve the communication skills of an individual in a day or two. One has to follow the two Ps to improve one's communication skills. The two Ps are Practice and Patience. One has to be extremely patient and practice a lot to improve communication skills. Interact with your friends, relatives, colleagues as much as you can and also try to gain from them in the discipline of accent, fluency, pronunciation as well as new words. If you come across any word whose meaning you are not aware of, don't ignore, always find out its meaning and whenever you speak the next time, try to use the new learnt word.
- Whenever a thought comes to your mind, always do your homework well in advance before communicating. Carefully prepare a content by choosing appropriate, sensible and relevant words. Avoid using extremely complicated words in the content. Try to make the content as crisp as possible. Unorganized and haphazard thoughts always lead to misunderstandings and confusions. Don't ignore even the minutest detail as questions can pop up anytime from the listener's side.
- The pitch and tone should be taken good care of while interacting. Don't stammer or chew half of the words while speaking. Speak clearly and properly in a tone audible to all the listeners, even those sitting at the back.

- Don't stretch any conversation, presentation or meeting too long as it tends to become monotonous and the message never reaches the brains of the listeners, and hence resulting in an ineffective communication. Crack some jokes, funny quotations, one liners, discuss about the day's weather, and use warm greetings and compliments to captivate the interest of the participants. Tea break or a snack break must be included to break the ice among the listeners and make the communication interesting and healthy.
- In any communication, it is very important to understand the recipient. Remember the listeners are also an active part of the communication. One must understand the mood, educational background, cultural back ground, thought process, religion background of the listeners before addressing. It is must to do a **KYC** (**Know your customer**) check before proceeding with the communication.
- Never communicate in a noisy background as noise acts a barrier to an effective communication. Busy streets, honking traffic, overcrowded buses and trains, market places, construction sites, railway stations should be avoided as the devil called "NOISE" overpowers the original content and thus distorts the message and information never reaches in its desired form. In case of an urgent message, rely on text message or non verbal mode of communication.
- Always cross check with the receiver whether he has downloaded the message in the correct form or not? Also ask questions from the receivers in between the conversation to reconfirm whether they are attentive or simply lost in their own dream world. While sharing any contact number, email id, bank account details or any other important information, always recheck with the recipient. At the end, do clear the doubts if any of the listeners.
- Don't always depend on verbal communication at work place. After any verbal communication with the fellow workers, make it a habit to send the minutes of the meeting or the important points through e mail marking a cc to all the participants. Always depend on planners, organizers and jot down the important points against the date set as the deadline to complete a particular task. During presentations, the addressee must use whiteboards, papers and the participants also must carry a notepad to avoid forgetting any point.
- The listeners after receiving the message must also give their valuable feedback whether they have received the correct information or not. Before leaving; the listeners must clear all their doubts and must respond to the sender to make the communication effective. Never leave the meeting with

queries in your head, always clear them with the speaker. The question answer session must come at the end of the conversation. The listener should not jump in between the conversation with questions as it leads to misunderstandings and conflicts.

• Last but not the least the sender must make an eye contact with the recipient for the desired impact. The speaker has to be very confident and ought to show positive body movement and attitude for the correct flow of information between the two parties.

Remember effective communication is a necessity in today's challenging scenario and the above tips definitely go a long way in improving one's communication skills.

ઉચ્ચ શિક્ષણક્ષેત્રે મહાવિધાલયમાં ગ્રંથાલયની ભૂમિકા મીનાકુમારી એન.રાઠોડ ગ્રંથપાલશ્રી શ્રી એચ.એસ.શાહ કોલેજ ઓફ કોમર્સ,મોડાસા.

પુસ્તાવના

- ગ્રંથાલયનો અર્થ અને વ્યાખ્યા
- ઉચ્ચશિક્ષણમાં ગ્રંથાલયનો ફાળો
- ગ્રંથાલયના પ્રકારો
- શૈક્ષણિક ગ્રંથાલયોનું મહત્વ
- ૨૧ મી સદીમાં ગ્રંથાલયનું ભાવિ
- ઉપસંહાર

૧. પ્રસ્તાવના:-

આદિકાળથી આપણને પુંસ્તક પરત્વેના પ્રેમની પરંપરા વારસામાં મળી છે. આપણા દેશમાં ગ્રંથોને સરસ્વતીનું પ્રતિક ગણીને તેનું પૂજન કરવામાં આવે છે. જેથી પુસ્તકનું મૂલ્ય ટકાવી રાખવામાં વિશેષ પ્રદાન છે. જ્યારથી લિપી આવિષ્કાર થઇ ત્યારથી માનવીના વિચારો અને માનવીની લાગણીઓને સ્થાયી સ્વરૂપ પ્રાપ્ત થયું છે. વેદકાળથી આપણે જોતા આવ્યાં છીએ કે માનવજાતનું ઉત્તમ વિચારધન સંવર્ધન થઇ રહ્યું છે પછીએ 'ગીતા' હોય કે 'બાઇબલ'.

ગ્રંથાલય એટલે ફક્ત એક નાનું કે મોટું મકાન નિંદ, પરંતુ તેના સ્વતંત્ર વાતાવરણમાં દરેક વ્યક્તિને તેનો વિકાસ સાધવામાં મદદરૂપ નીવડી શકે છે. ગ્રંથાલય એ લોકોને જાગૃત કરે છે તેમજ તેની વાચન રૂચીને કેળવે છે. કોઇપણ શૈક્ષણિક શેત્રનું ગ્રંથાલય પછી તે શાળા ગ્રંથાલય હોય કે કોલેજ ગ્રંથાલય અથવા વિશ્વ વિધાલય ગ્રંથાલય હોય તે ફક્ત ગ્રંથોનું જ સંગ્રહ્સ્થાન નથી. સાથે-સાથે તે વિશાળ જ્ઞાનનો ભંડાર પણ છે તે પોતે જીવત બનીને વાંચકો અને વિશાળ જ્ઞાનના વિકાસ વચ્ચે એક સેતુ તરીકેનો ભાગ ભજવે છે. ગ્રંથાલયનું કાર્ચ ફક્ત ગ્રંથાલયમાં રહેલ ગ્રંથસંગ્રહ્ને સાયવવાનું નથી પરંતુ તે ગ્રંથસંગ્રહ્ તેના ઉપયોગકર્તા સુધી પહોચાડવાનું અને તે ધ્વારા તેના જ્ઞાનમાં વૃદ્ધિ કરવાનું છે.

માનવજીવનની આ સંસ્કૃતિ કથાને જીવંત રાખનાર અને આજની જીવન પ્રણાલી સાથે યુગ યુગાન્તરનું અનુસંધાન જોડી આપનાર પ્રભાવશાળી માધ્યમ પુસ્તક છે. વેરાન રણમાં, દરિયામાં, પહાડોમાં, ગુફાઓમાં જેલની કોટડીમાં માણસને પુસ્તક મળી જાય તો જાણે નવી દુનિયા મળી આવે છે.

2. ગ્રંથાલયનો અર્થ અને વ્યાખ્યા :

અર્થ:-

આજનો આધુનીક યુગ એટલે કોમ્પ્યૂટરનો યુગ અથવા ઈન્ટરનેટ યુગ પણ કહેવાય છે. માટે ગુંથાલયએ પુસ્તકો સાયવવાનું કેન્દ્ર કહી શકાય નહિ એ તો ગુંથાલયનું ટુકું સ્વરૂપ છે પણ આધુનિક ગુંથાલયો માહિતી કેન્દ્રો બન્યા છે. ગુંથાલયમાં માત્ર પુસ્તકો સાયવવા કે પુસ્તકનું આદાન-પ્રદાન થાય છે તેમ હવે ના કહી શકાય. કારણકે આધુનિક માહિતી વિસ્ફોટના યુગમાં દિન પ્રતિદિન માહિતીની માંગ વધતી ગઈ છે. શિક્ષણ પદ્ધતિઓમાં આમૂલ પરિવર્તન આવ્યું છે. ગુંથાલયની વ્યવસ્થા અને ગોઠવણી માટે યોક્કસ પદ્ધતિઓનો વિકાસ થયો, અર્વાયીન યુગનું ગુંથાલય કેવું હોય તેના વિશેષ અંગો કયા છે? આની વિગતો ગુંથાલયની વ્યાખ્યા ઉપરથી સ્પષ્ટ થઇ શકે છે.

વ્યાખ્યાઓ :

" જુદી-જુદી જાતના પુસ્તકોનો સંગ્રહ હોય તે સ્થાન એટલે ગ્રંથાલય"

ભગવદ્-ગો-મંડલ

"લેખિત-મુદ્રિત ગ્રંથોનો સંગ્રહ અને વિતરણ ધરાવતી સંસ્થા એટલે ગ્રંથાલય"

ગુજરાતી વિશ્વકોશ

"ગ્રંથાલય એ જ્ઞાન વિશ્વની જાણકારી મેળવવાની ચાવી છે"

મહાત્મા ગાંધી

"વાંચકો, પુસ્તકો અને ગ્રંથાલયના કર્મચારીઓ ત્રણેયનો સમૂહ એ ગ્રંથાલય છે"

ડો.એસ.આર.રંગનાથન

"વિશ્વના સર્વોતમ વિચારો જાણવાનું સૌથી ઝડપી અને સરળ માધ્યમ એટલે ગ્રંથાલય"

ગેરોલ્ડ જોન્મન

ઉપરોક્ત વિવિધ વ્યાખ્યાઓ જોતાં આધુનિક ગ્રંથાલયની વિભાવના ફલિત થાય છે અને ગ્રંથ, અગ્રંથ સામગ્રીનો માત્ર તેમાં સંગ્રહ કરવામાં આવતો નથી પરંતુ આજના ગ્રંથાલયો ગ્રંથાલયોમાંની વાંચનસામગ્રીનો વાંચકો મુક્ત રીતે ઉપયોગ કરે તે માટે વ્યવસ્થિત અને વિવિધ ટેફનીકલ પ્રક્રિયાઓની સુસજ્જ કરી વાયકોને શક્ય હોય તેટલી વધારે ઝડપથી માહિતી પ્રાપ્ત થાય એવી સુંદર વ્યવસ્થા કરવામાં

આવે છે.

"ગ્રંથાલય એ જ્ઞાન વિશ્વની જાણકારી મેળવવાની યાવી છે."

મહાત્મા ગાંધી

3. ઉચ્ચશિક્ષણમાં ગ્રંથાલયનો ફાળો :

વિશ્વમાં દરેક સમાજે શિક્ષણનું મહત્વ સ્વીકાર્યું છે. દરેક દેશમાં એક વાતનો સ્વીકાર થયો છે. 'જેટલું શિક્ષણમાં રોકાણ સારું એટલો દેશનો વિકાસ વધુ થઇ શકે.' ઉચ્ચ શિક્ષણ શાળા શિક્ષણને માત્ર આગળ દોરી જનાર નથી. પરંતુ સમાજમાં વ્યક્તિને પોતાનું સ્થાન નિશ્ચિત કરાવે છે. ઉચ્ચ બૌદ્ધિકતા જાળવી રાખવા, ટકાવી રાખવા અને સંવર્ધિત કરવા માટે ગ્રંથાલયો જરૂરી છે. લોકશાહીની આધારશીલા શૈક્ષણિક ગ્રંથાલયો છે. કોઈ એ સાચું જ કહ્યું છે કે સંભવ છે કે ગ્રંથાલયો સંસ્કૃતિનું સંવર્ધન કરે છે. પરંતુ તેટલું યોક્ક્સ છે કે કોઈ પણ સંસ્કૃતિ ગ્રંથાલયો ઉચ્ચ શિક્ષણમાં નિર્ણાયક ભાગ ભજવી શકે છે. સુદ્રઢ લોકશાહીની પરિપૂર્ણતા માટે ગ્રંથાલયનું અસ્તિત્વ આવશ્યક જ નિક, પરંતુ અનિવાર્ય બની રહે છે.

ગુંથાલયને શૈક્ષણિક સંસ્થાઓના હાર્દ સમાન ગણાવ્યું છે. રાષ્ટ્રના વિકાસ માટે ગુંથાલયનો ફાળો અમૂલ્ય છે. વિયારકો, ચિંતકો, અને શિક્ષણ વિદો દેશના શૈક્ષણિક કાર્યકર્મોમાં ગુંથાલયોના ફાળા ઉપર ભાર મૂકે છે.

આમ ઉચ્ચશિક્ષણ માટે ઉત્તમ પ્રકારનું ગ્રંથાલય જરૂરી છે.

૪. ગુંથાલયના પ્રકાર :

સમગ્ર વિશ્વ આજે એકવીસમી સદીની સાથે યાલે છે. એકવીસમી સદીમાં જ્ઞાન અને માહિતીનો પ્રયંડ વિસ્ફોટ થયો છે. તેથી હવે એક જ ગુંથાલય બધા જ વાયકોની આવશ્યકતા પૂરી ન કરી શકે તેના કારણે ગુંથાલયોના અનેક પ્રકારો અસ્તિત્વમાં આવ્યા છે. ગુંથાલયની આધુનિક વિશાળ વિભાવના જેવા કે શિક્ષણ, સમાજ, વિજ્ઞાન, ઉદ્યોગ વગેરેમાં ગુંથાલય અનિવાર્ય અંગ બન્યું છે.

શિક્ષણ એ મનુષ્યના વિકાસનું અગત્યનું પાસું છે. હવે ગ્રંથાલયની આધુનિક સંકલ્પના બદલાઈ છે. તે કેવળ પુસ્તક આપ-લે યંત્રવત કેન્દ્ર બન્યું છે. સામાજિક, આર્થિક, શૈક્ષણિક અને સાંસ્કૃતિક ક્ષેત્રની સંસ્થાઓ માટે ગ્રંથાલય એક આવશ્યક અંગ બન્યું છે. જેમ તેની મહત્તા ક્રમશઃ સ્વીકારાતી જાય છે તેમ તેની ઉપયોગીતા પણ વધી રહી છે.

United Kingdom University Grants Committee ક્ષરા બનાવવામાં આવેલી Library Committee પોતાના Report માં છ પ્રકારના ગુંશાલયોની ચર્ચા કરે છે. જે નીચે પ્રમાણે છે.

૧ રાષ્ટ્રીય ગ્રંથાલય (National Library)

- ર વિશિષ્ટ ગ્રંથાલય (Special Library)
- 3 સાર્વજનિક ગ્રંથાલય (Public Library)
- ૪ શાળા ગ્રંથાલય (School Library)
- પ મહા વિદ્યાલય ગ્રંથાલય (College Library)
- લિશ્વ વિદ્યાલય ગ્રંથાલય (University Library)જેમાં આપણે મહા વિદ્યાલય ગ્રંથાલય વિશેની ચર્ચા કરીશું.

- મહાવિદ્યાલય ગ્રંથાલય (College Library) :-

ઉચ્ચ શિક્ષણ ક્ષેત્રે મહાવિદ્યાલય ગ્રંથાલયે વિદ્યાર્થીઓ તેમજ અધ્યાપકો માટે મહત્વની ભુમિકા અદા કરે છે. આ ગ્રંથાલયનું પાયાનું કાર્ય શિક્ષણ અને અધ્યયનમાં વિધ્યાર્થીઓને સહાયરૂપ થવાનું છે તે કોલેજના અધ્યાપકો અને વિદ્યાર્થીઓ બંનેના બૌદ્ધિક વિકાસ માટે વાંચનસામગ્રીની જરૂરિયાત પૂરી પડે છે. મહાવિદ્યાલય ગ્રંથાલય વિદ્યાર્થીઓની સાથે-સાથે અધ્યાપકોને પણ તેમના સંશોધન કાર્ય માટે આવશ્યક વાંચનસામગ્રી અને જરૂરી પ્રલેખો પુરા પડે છે. વિદ્યાર્થીઓના બૌદ્ધિક વિકાસમાં ગ્રંથાલય અને પુસ્તકો સહભાગી બને તે માટે વિદ્યાર્થીઓને સ્વ અધ્યયનની ટેવ કેળવવા માટે પ્રોત્સાહિત કરે છે. ગ્રંથાલયની વાંચનસામગ્રી તથા ગ્રંથાલયોના અસરકારક અને કાર્યક્ષમ ઉપયોગ માટે વિદ્યાર્થીઓને ગ્રંથાલય ધ્વારા માર્ગદર્શન પૂરું પાડવામાં આવે છે.

૧. મહાવિદ્યાલય ગ્રંથાલયના ઉદેશ્યો :

મહાવિદ્યાલય ગ્રંથાલયના મુખ્ય ઉદેશ્યો નીચે મુજબ વર્ણવી શકાય.

- ૧ જ્ઞાનનો ફેલાવો કરવો અને વાયક વર્ગના બૌદ્ધિક વર્ગનો વિકાસ કરવો.
- ર ઉપભોક્તાઓને જરૂરી વાંચન સામગ્રી પૂરી પડવી.
- 3 વિદ્યાર્થીઓને તેમના સ્વશિક્ષણમાં સહ્યયરૂપ થવું.
- ૪ વાંચન સામગ્રીનો સંગ્રહ, જાળવણી અને મહત્તમ ઉપયોગ કરાવવો.
- ૫ વ્યાપક પ્રમાણમાં વાંચન સામગ્રીનો સંગ્રહ કરવો.
- ક ગ્રંથાલયોનો ઉપયોગકર્તાઓને આવશ્યકતા અનુસાર સંદર્ભ સેવા પૂરી પડવી.
- ૭ અધ્યાપકોને અભ્યાસ અને સંશોધનમાં મદદરૂપ બનવું.
- ૮ વિદ્યાર્થીઓની વાંચનટેવ કેળવાય તેમજ તેની સ્મરણશક્તિનો વિકાસ થાય તે માટે સહ્યયરૂપ થવું.
 - ૯ સંશોધકોને તેમના સંશોધન કાર્ય માટે મદદરૂપ થવું.

- ૧૦ શિક્ષણ સંશોધન અને અધ્યયન માટે પાયાની જરૂરિયાતો પૂરી પાડવી.
- ૧૧ ગ્રંથાલયની વાંયનસામગ્રીનો ઉપયોગ દ્રારા વિદ્યાર્થીઓમાં સંશોધનવૃત્તિનો વિકાસ કરવો.

આમ, ઉચ્ચ શિક્ષણક્ષેત્રે મહાવિદ્યાલય ગ્રંથાલય ઘણી બધી પ્રવૃત્તિઓ તેના ઉદેશ્યોની સિદ્ધિ સાથે કરે છે અને એ ઉદેશ્યોને સફળ બનાવવા માટે ગ્રંથાલયમાં વિવિધ વાંચનસામગ્રીનું આયોજન કરીને વિદ્યાર્થીઓનો બૌદ્ધિક વિકાસ થાય તે માટેના પ્રયત્નો કરવામાં આવે છે.

२. महाविद्यालय ग्रंथालयना डार्यो :-

કોઈ પણ ગ્રંથાલયના પોતાના આગવા કાર્યો હોઈ શકે છે. મહાવિદ્યાલય ગ્રંથાલયના કાર્યો નીચે મુજબ છે.

- ૧ દરેક ઉપભોક્તાને જરૂરીયાત મુજબ સંદર્ભ સેવા આપવી.
- ર અધ્યાપકો અધ્યયન અને અધ્યાપન કાર્ય તેમજ તેમનું સંશોધન કાર્ય સારી રીતે કરી શકે તે માટે સહયોગ આપવાનું કાર્ય.
 - 3 ગ્રંથાલયમાં વધુને વધુ ઉપયોગ માટે પરિસંવાદનું સમાયોજન કરવું.
 - ૪ વિદ્યાર્થીઓના અધ્યયન માટે જરૂરી પુસ્તકો ધરે લઇ જવા માટે આપવા.
 - ૫ વ્યાપક પ્રમાણમાં વાંચન સામગ્રીનો ઉપયોગ કરવો.

3. મહાવિદ્યાલય ગ્રંથાલયના વિકાસમાં વિવિધ કમિટીઓ :-

મહાવિદ્યાલય ગ્રંથાલયના વિકાસમાં વિવિધ કમિટીઓનો સમાવેશ થાય છે. જે નીચે મુજબ છે.

- ૧. ડો.રાધાકૃષ્ણન કમિશન
- ર. ડો.રંગનાથન કમિશન
- યુ.જી.સી. ગ્રાન્ટ વિષયક
- લાયબ્રેરી ફંડ
- પુસ્તકાલય કર્મચારી
- પુસ્તક પસંદગી અને ખરીદી
- 3. કોઠારી કમિશન

૫. શૈક્ષણિક ગ્રંથાલયોનું મહત્વ :

શિક્ષણની શરૂઆત બાળકના જન્મથી જ માતાના ખોળામાં થાય છે. ત્યારબાદ તેનું અક્ષરજ્ઞાન શાળામાંથી જ શરૂ થાય છે. શૈક્ષણિક ગ્રંથાલયના વિકાસ અને નિભાવની જવાબદારી જે તે શૈક્ષણિક સંસ્થાઓની હોય છે. તેના ગ્રંથાલયમાં સંગ્રહ કરવામાં આવતી વાંચનસામગ્રી મોટેભાગે શૈક્ષણિક કાર્યક્રમને લગતી હોય છે. શૈક્ષણિક ગ્રંથાલય વિષય વચ્ચેની ભેદરેખા દુર કરી સમન્વય સાધે છે.

શૈક્ષણિક ગુંથાલયો એટલે શાળા, મહાવિદ્યાલય અને વિશ્વવિદ્યાલયો જેવી શૈક્ષણિક સંસ્થાના ગુંથાલયો.

"પુસ્તક સિવાયનો ખંડ એ આત્મા વગરના શરીર સમાન છે."

વિષયના ઊડાણપુર્વકનો અભ્યાસ શૈક્ષણિક ગ્રંથાલયોથી થાય છે. લોકશાહી સક્ષમ બનાવવા માટે શૈક્ષણિક, સામાજિક, રાજનૈતિક અને આર્થિક બાબત પર સ્વતંત્ર રીતે વિચાર, ચિંતન કરી શકે તેવા નાગરિક તૈયાર કરવાની ભુમિકા તૈયાર કરે છે.

૬. ૨૧મી સદીમાં ગ્રંથાલયનું ભાવી :

શૈક્ષણિક ગુંથાલયમાં યાંત્રિકરણ એ લગભગ અનિવાર્ય બાબત બની ગઈ છે. કમ્પ્યુટર અને ટેલિકોમ્યુનીકેશન ટેફનોલોજી એ ગુંથાલય સેવાઓમાં ક્રાંતિ સર્જી છે. ગુંથાલયના વિવિધ કાર્યો જેવા કે ગુંથ પ્રાપ્તિ, નોધણી, સ્યીકરણ, આપ-લે વિભાગ, સામાયિક નિયંત્રણ, નીર્દેશીકરણ, સારસંક્ષેપ વગેરે કોમ્પ્યુટરની મદદથી કરી શકાય છે. માઈકો ફોર્મને કારણે જગ્યાનો પ્રશ્ન ને જુના ડોક્યુમેન્ટ્સના સંરક્ષણની મોટી સમસ્યા હલ થઇ છે તેમજ સીડીરોમ ટેફનોલોજી ગુંથાલયના કદને નાનું કરવા તથા ત્વરિત સેવાઓ માટે અસરકારક સાધન તરીકે પુરવાર થયાં છે.

૭. ઉપસંહાર :

ઉચ્ચ શિક્ષણ શેત્રે ગ્રંથાલયો હવે ઉત્તમ ગ્રંથોનો સંગ્રહ અને ઉત્તમ સેવા ધ્વારા અસરકારક ભૂમિકા ભજવી શકે છે. ઉચ્ચ શિક્ષણના વિકાસમાં અગત્યનો ફાળો આપી શકે છે. મહાવિદ્યાલય ગ્રંથાલયની ભૂમિકા સિકય બનાવી શકાય છે. તેમજ તે મહત્વની ભૂમિકા પૂરી પડે છે.

ગ્રંથાલય એ યુગોની તપશ્ચર્યા સંગ્રહાયેલી છે. આથી આવા ગ્રંથાલયોને જાળવવા અને તેનું જતન અને સંવર્ધન કરવું તે દરેક વ્યક્તિની પવિત્ર ફરજ છે.

સંદર્ભ સૂચિ

- ૧. "ઇન્ડિયન મીનીસ્ટ્રી ઓફ એજ્યુકેશન યુનિવસિટીં એજ્યુકેશન રીપોર્ટ" ન્યુ દિલ્હી :ગવનમેન્ટ પ્રેસ, ૧૯૪૮
- ર. ગુજરાતી વિશ્વકોશ ટ્રસ્ટ, ગુજરાતી વિશ્વકોશ, વો.-૬, અમદાવાદ: ગુજરાતી વિશ્વકોશ ટ્રસ્ટ, ૧૯૯૪-૯૯.
- 3. ભૈયા, છગન, "ગ્રંથાલય અને સમાજ", ૪ થી આવૃત્તિ, ગુજરાત ગ્રંથરત્ન :અમદાવાદ, ૧૯૯૩,પૃ. -૧૪-૧૮
- ૪. મિત્તલ આર.એલ.લાયબ્રેરી, એડમીનીસ્ટેશન થીયરી એન્ડ પ્રેક્ટીસ,દિલ્હી,૧૯૬૬.
- પ. શાહ્,એ.જી.અને દવે જગદીશ કે. સંશોધન પદ્ધતિઓ ૪ થી આવૃત્તિ. અમદાવાદ: અનડા બુક ડીપો, ૧૯૯૨, પૃ. ૨૩-૨૬.

Review of different approaches of Bioremediation of chromium: a very important heavy metal pollutant of soil and water

Ishita Patel¹ Manisha Desai²

¹ Ph. D. scholar, J.J.T. University, Rajasthan

*2Head. Department of Botany, Bhavan's Sheth R A College of Science, Ahmedabad

Abstract:

Now a days, chromium is extensively used in industries of leather tanning, stainless-steel, chemicals, food preservatives etc. Other important sources of chromium are mine tailing, fertilizers, pesticides and animal manures through which it is mixed in soil and underground as well as river streams and pollute them and pose direct threat to society. Dispersed literature is harnessed to success fully review the major sources, latent hazards and different effective bioremediation strategies for hexavalent chromium found in contaminated soil and water. Bioremediation involves bioabsorption and biodegradation of chromium which is governed by different microbes and plants which involves absorption of chromium element by the organism without any usage in its metabolism or metabolize it in to simpler non –toxic form at the polluted areas resulted in cleaning up chromium contaminated sites. Present article focuses different strategies of bioremediation for removal of chromium from soil, water, industrial waste in detail.

Key words: Bioabsorption, Biodegradation, Hexavalent chromium, microbes

1. Existence of chromium in environment

Chromium can be present in oxidation states of +2 to +6 but primary oxidation states are two, hexavalent (Cr VI) and trivalent (Cr III). Rarely, Cr(VI) is found as chromate (CrO4 2-), although it is usually in equilibrium with other forms like dichromate in pH dependent manner, and is more soluble and mobile than Cr(III). Tivalent and hevavalent chromium are extremely different in their properties like physicochemical properties and biological properties. Cr(VI) is extremely water soluble than Cr(III) and mobile in the environment. Cr(VI) is highly mobile than Cr(III) and very hard to remove from water. In addition Cr(VI) is highly toxic (□ 100 times), mutagenic (\square 1000 times), carcinogenic and teratogenic than Cr(III). (Saranraj P. and Sugitha D., 2013) The EPA declares Cr(VI) as a potent carcinogen if inhaled by humans, but the other state Cr(III) is not a carcinogen rather required in trace amount for cellular metbolism And thus chromium (VI) can be converted in to less toxic form which is Cr(III). [Rita Evelyne. J, 2014] The United States Environmental Protection Agency (US EPA) has recognized Cr(VI) as one of the 17 chemicals posing the greatest threat to humans [USEPA, 2010]. The chief dangerous toxic metals of concern for India are lead, mercury, chromium, cadmium, copper and aluminum which remain in soil and present potential threat to society. Data reveals that chromium is the sixth most abundant toxic heavy metal on earth shell which is recalcitrant and resistant to oxidation [PIB, 2011].

All parts of the environment air, water and soil contain chromium at certain extant. Reported natural concentration of chromium in soil, ranges from 10 to 50 mg/ kg , in fresh water, it ranges from 0.1 to 117 μ g/L, and at seawater it is estimated from 0.2 to 50 μ g/ L. Significant

variation in Cr concentration has been reported in the atmosphere which is from $5.0 \times 10^{-6} - 1.2 \times 10^{-3} \mu \text{g/m}^3$ in air samples.[ATSDR,2009]

There are considerable amount of these heavy metals are librated in environment by humans (Table.2.1)

Various industries like chromite are processing industries, fertilizer and chemical industries, sewage plants from industrial and residential sources dispatched significant amount of Cr. Annually in India, tanning industries librates roughly 2000–32,000 tons of elemental Cr in the environment. Ranipet at Tamil Nadu like areas possess high number of tanneries which is yet expanding and actively involved in chrome tanning and thus become "Critically polluted area". Investigation reveals high concentration of chromium in wells and ground water at nearby areas of such industries leading them to be taken in to consideration for bioremediation which was recommended by NEERI.[Tamil Nadu pollution control board, 2010]. Another example of highly chromium polluted site is Sukinda Chromite Valley of Orissa which contains 95% of India's Chromite ore. Here, approx. 30-40 thousand ppm of Cr (VI) after leaching, librated into the ground water regime and significanly pollute the ground water. [Rathore *et al.*, 2014]

S.No	Heavy metal	Source	
1.	Lead	Present in petro – based materials and many other manufacturing amenities	
2.	Chromium	built-up operations together with chrome plating, petroleum refining, leather, tanning, wood preserving, textile manufacturing and pulp processing. It exists in both hexavalent and invalent forms.	
3.	Zinc	Widely used in industry to make paint, rubber, dye, wood preservatives and ointments and electroplating industries.	
4.	Nickel	Galvanized, paint and powder batteries processing units.	
	Navneet Joshi (2003)		

Table.2.1: Sources of heavy metals

2. Various effects of chromium

Heavy metal like chromium became popular pollutant due to its hazardous effects on humans and animals which is due to its mutagenic effects on cells which can result in cancer like diseases. Extensive research on this area revealed carcinogenicity and teratogenicity of chromium in mammals. Investigation at sites having high pollution of chromium contamination in ground water and potable water resulted in major health issues and even in some cases death of peoples exposed to it. The major health issues include asthma, tuberculosis, gastrointestinal bleeding, infertility, birth defects and lung cancer etc. [Das A. and Mishra S., 2010] Different forms of chromium are recognized to origin lung cancer, cancer of nasal cavity, sinus, stomach and larynx. The chronic ulcer having typical lesion which is not easily heal, peptic ulcer and skin discoloration are commonly found within the population habitat at surrounding area of Cr polluted sites. (Rathore *at el.*, 2014) Not only chromium other heavy metals are also harmful in different aspects if tremendously penetrated in food chain. (Table.2.2)

S.No	Heavy	Effects
	metal	
1.	Chromium	Irritant, sickness and nausea, carcinogen, low level exposure can irritate
		the skin and cause ulceration. Long term exposure can cause kidney and
		liver damage, and damage too circulatory and nerve tissue.
2.	Zinc	Nausea and vomiting. Zinc combines with other elements to form zinc compounds; common zinc compounds found at hazardous waste sites
		includes zinc chloride, zinc oxide, zinc sulphate, zinc phosphate, zinc cyanide and zinc sulfide
3.	Lead	Damage to nervous system, circulatory system, blood forming system, reproductive system, gastrointestinal tract and kidney. Lead is known
		for its harmful effect on the living world, enters the organism by
		inhaling swallowing, or inclusion through the skin. The greatest hazard
		from lead comes from its leaning to accumulate in the human organism.
		The central nervous system is most insightful to the effects of lead.
4.	Nickel	Short - term overexposure to nickel is known to cause any health
		problems, but long-term exposure can cause decreased body weight,
		heart and liver damage and skin irritation. The EPA does not currently
		regulate nickel levels in drinking water.
Navneet Joshi (2003)		

Table 2.2 Harmful effects of various heavy metals

Not only animals, plants are also adversely affected by chromium absorption though plants require metal ions for their growth and metabolism, high concentration of metals is toxic for them. Former investigations proved that chromium is significantly affect the growth and development of plants as they are immobile organisms and thus come in direct contact with contaminated soil and water. [Sharma et al., 2003; Shanker et al., 2005] As other live forms, plants are also having defense mechanism which transform such toxic heavy metals in to physiologically reasonable forms. Abnormally high concentration of metals, accumulated in plants and results in synthesis of reactive oxygen species, free radicals, damaging macromolecules like lipids, proteins and nucleic acid, abnormal carbohydrate metabolism and mitochondrial respiration [Labra et al., 2006; Prado et al., 2005] More prominent adverse effects were reported on plants parts like roots and overall growth as roots come in direct contact they be the site of accumulation of chromium and due to low rate of transfer of metals to the leaves their growth become stunted and root hair development also become impaired. Such effects were reported by Polti et al. (2011) on plants of Zea mays. Not only roots, other parts of plant seedlings raised in presence of Cr (VI) were shown deteriorative effects like decrease in leaf size and pigmentation (Cervantes et al., 2001, Polti et al., 2011) There was significant decrease in lengths of leaf, root as well as stem have been successfully reported along with it total biomass of Cr treated plants was decreased considerably from 25 to 80% accordance with time. Shanker et al. (2005) anticipated a double system to elucidate the deterioration in root growth, plant height and decrement in size of vascular system cells which resulted in lower nutrients and water transport to the plants parts as well as Cr transport and accumulation alters leaf cellular metabolism. The mode of Cr uptake, trasport and accumulation by plants has been derived by numerous investigators (Mishra et al., 1995; Zayed et al., 1998; Vandecasteele et al., 2006; Mandiwana et al., 2007; Gheju et al., 2009). Different forms of chromium have different uptake mechanisms, Cr(VI) uptake is depended on metabolic energy where as Cr(III) uptake is not. After uptake, metal accumulation and translocation inside the plants depends on oxidation state of metal i.e. accumulation rate of Cr (VI) is higher than Cr (III). (Zayed et al., 1998) The highest accumulation of Cr has been reported in roots from which it is translocated to the aerial parts by xylem in which again traslocation rate of Cr(VI) is higher than Cr(III), seemingly due to electrostatic interaction of Cr(VI) is higher with vessel walls (Cervantes *et al.*, 2001).

Majority of heavy metals are toxic for the microorganisms and act as antimicrobial agents i.e. both antibacterial and antifungal agents and affect micro flora of Cr containing soil. In spite of having toxic effects on microbes, the various reports have been there which show that microorganisms become resistant to metals present at the site of their existence and even utilized for their removal from metal polluted areas. (Jin et al., 2011; Asha et al., 2013) Microorganisms and plants are habitually used for the removal of heavy metals. The technology involves use of microorganism and living beings like plants is known as bioremediation whose considerable significance has been reported to cleaning up metal polluted soil, surface as well as ground water and sediments. Bioremediation is a natural process because some of the metals are useful for the metabolism in minute quantity and thus taken up by organisms naturally which leads in to reduction of the accumulated metals from the contaminated areas. (Girma G., 2015) An additional report of Jin et al., (2011) depicted that biodiversity has important role in such remediation via microorganisms and for that bioavailability can be improved by incorporating organic nutrients, biosolids and compost like fertility increasing components within soil.

3. Introduction of remediation techniques for heavy metal pollution:

Today, the discharge of contaminants by human activities has increased tremendously over former few decades. Indeed, before several years man is after fast development of industries, due to sudden rise in industrial pollution, now he is behind the remedy of it and as pollutants level became so great that it certainly overwhelmed its self-cleaning by great accumulation within environment and thus the need of development of remediation techniques have been arisen. (Thassitou and Arvanitoyannis, 2001) Soil and water pollutions freshly gathering considerable attraction and so as their rectifying techniques which includes use of bioremediation as well as other techniques which can effectively minimize hazardous effects of pollutants (EPA, 2003).

One of the major pollutants is heavy metals. As said by Sharm and Rehman (2009) heavy metals are metals bearing position from period 3 to 7 in periodic table and atomic number 22 to 92. Many researchers like Costa and Duta (2001) analyzed and found that copper, lead, chromium, mercury and cadmium heavy metals are potent hazardous pollutants of soil and water whose accretion leads to serious damages in agriculture and food quality. The concept of biomagnifications also has been came in lime light due to bioaccumulation of such heavy metals in food leads in to their entry in food chain which directly affects plants, animals including humans adversely. Main routes of entry of these metal pollutants in human body are ingestion and inhalation from which ingestion is the main one (Costa and Duta, 2001).

There are various methods reviewed over here for treating heavy metal contaminated ground water and soil.

Techniques for removal of heavy metals from water and land are classified in three major categories:

- 1. Chemical treatment technologies
- 2. Physico-chemical treatment technologies
- 3. Biological/biochemical/ biosorptive treatment technologies
- 1. Chemical treatment technologies:

This technology is more applicable and be the best choice for treating contaminated groundwater, where contaminants are dispersed deeply below the surface of the land and other remediation techniques are hard to apply. Here chemicals are used to decrease the toxicity of metals by transforming them in nontoxic states. (Evanko and Dzombak, 1997) The most common method of this category is reduction. Chromium reduction by barium sulphite gaseous sulphurdioxide, sodium sulfite, sodium metabisulphite, ferrous sulphate, lime and limestone for reduction of Cr (VI) to Cr(III) was successfully reviewed by researchers like Kato *et al.* (1991) and Jacobes *et al.* (2001) Other important categories are chemical flushing and *insitu* chemical fixation. Important sub techniques of chemical flushing are soli washing and ion exchange which are nicely reviewed by Hashim *et al.*,(2011).

Physico-chemical treatment technologies

The physical methods are based on the physicochemical characteristics of the substances which are to be remediated. In these technologies all techniques involve physical activities like barrier construction, physical absorption, physical adsorption etc. as well as biochemical processes like precipitation. Majority of times, two or more techniques are applied together to rectify pollution problem. Various method like permeable reactive barriers e.g. use of activated charcoal and other absorptive, use of adsorption, filtration and absorption as well as electro kinetic remediation of metal pollutants were applied, investigated and reviewed by various investigators. (Lee et al., 2009; Apak et al., 1998; Gupta et al., 2004; Han et al., 2000; Komnitsas et al., 2007) In the area of physicochemical treatments adsorption, soil washing, Photocatalysis, capping and electro kinetic methods were also impressively reviewed by various investigators. (Kang et al., 2004; Rana P., 2004; Wang et al., 2008; Singh et al., 2008)

The disadvantages of chemical and physico-chemical methods are high chemical requirement which leads to higher cost, removal of unpredictable amount of metal and chances of secondary pollution due to use of contaminating reagents used in the techniques. Thus, biological approaches can be more successful and effective in remedy of heavy metal pollution. (Dhal et al., 2010) Moreover, most heavy metal ions are water soluble so very hard to filter by physical methods (Hussein et al., 2004). If heavy metal concentration is very low physic-chemical method is less effective than biosorption or bioaccumulation like biological methods. (Kapoor *et al.*, 1995)

2. Biological/biochemical/ biosorptive treatment technologies

These treatments are based upon use of biological components as well as living

organisms like microorganisms and plants for remediation of heavy metal pollution of soil and water. Methods categorized under this class are biological activity in the subsurface, enhanced biorestoration and biosorption of heavy metals which are elaborated by Hashim *et al.*,(2011)

The hazardous form of the chromium Cr (VI) compounds are powerful oxidants which can rapidly reduced in to Cr (III) by different biological remediation techniques. Bioremediation is held by activity of microbes as well as higher organisms like plants which stabilize non toxic Cr (III) form of the chromium. Bioremediation can be defined as the process whereby organic wastes are biologically degraded under controlled conditions to an innocuous state, or to level below concentration limits established by regulatory authorities. (Muller et al.., 1996) Microbiological remediation is carried rather by indigenous microbes present at the polluted area or they are isolated, adapted and transferred to the site of pollution. The living beings mainly deteriorate the contaminants by transforming them in to simpler forms and this transformation is a part of their metabolic reactions. It alos might possible that single contaminant is degraded by multiple organisms. The process of enhancement of biodegradation by import of organisms is termed as Bioaugmentation (Dhal et al., 2010). Microorganisms utilized processes like 1) biosorption to cell walls and entrapment in extracellular capsules, Transport across the cell membrane, Precipitation, complexation and Oxidation – reductions for deteriorating heavy metal stress at the contaminated sites. They are capable of taking up heavy metals even from polluted water effluents which was successfully investigated by Brierley et al., 1990. Several biological materials have been indentified which are having high binding capability with heavy metals. Organisms like bacteria (Hartmeier and Berends, 1995), Fungi (Luef et al., 1991), Algae (Volesky and Holan, 1995) and Yeast (Sugawara et al., 1997)

2.1 Types of Bioremediation:

Basic treatments are of two types 1) In situ and 2) Ex situ remediation.

1) In situ bioremediation: When remediation is applied in the subsurface or deep inside is referred as in situ remediation. Formerly this method was used as most convenient and effective to clean up the aquifers and soil contaminated by organic chemicals but later has extended as a rectifier to tackle inorganic as well as toxic metal. This method has its own beauty due to costeffectiveness and utilization of harmless microorganisms for degradation of pollutant. Chemotactic ability is an important factor of in situ bioremediation because microbes with chemotactic ability can reach up to contaminant present at the lower layers of the soil or water aquifers an thus enhancement of chemotactic ability of the microbes leads to enhancement in remediation effectiveness. (Kulshreshtha et al., 2014)

There are different subtypes of in situ bioremediation like Intrinsic and Engineered bioremediation.

- a) Intrinsic bioremediation: It is the process which is governed only by naturally occurring organisms and enriches them in terms of nutrients and favorable conditions for degradation of heavy metals without any enhancement by engineering.
- b) Engineered In situ bioremediation: This approach of remediation involves the introduction of new organisms to the contaminated site for remediation and extra enhancement by providing physicochemical conditions favorable for their growth.

In situ remediation has advantages as follows:

- It is faster and less costly
- It can completely transform organic contaminants
- In can be modified as volumetric treatment which used for treating adsorbed as well as soluble contaminants
- It utilizes very large zone of treatment called areal zone than other technologies

This process also having some limitations like there is in complete transformation of some recalcitrant contaminants. There is a possibility that it halts at the intermediate state and that state is more hazardous than former one. The other unfavorable possibility is that the growth of the indigenous organisms and thus remediation may be inhibited by some toxic heavy metals. In some cases for degradation of contaminant pre-adapted organisms need to be used.

- 2) **Ex situ bioremediation:** It is the biological process which involves deposition of soil above ground of treatment followed by increase aeration and provides suitable physiological conditions for better degradation of contaminant by indigenous microbes. It is done by pumping of ground water resulted in excavation of polluted soil. It is further divided as solid phase and slurry phase bioremediation.
 - a) Slurry phase: It is the reaction performed in controlled manner and referred as bioreactors as contaminated soil is mined and mixed with water and slurry is used to fill in a bioreactor. This process is done by mixing of fixed amount of water which depends on concentration of contaminant. Its other parameters are also optimized and performed in controlled manner.
 - **b) Solid-phase:** In this method sample contaminated soil is excavated and deposited to the piles. The technique involves organic wastes like leaves, agricultural wastes etc., solid waste and domestic as well as industrial wastes. (Kulshreshtha *et al.*, 2014)
- 2.2 Principle of chromium remediation:

Chromium is remediated via conversion of Cr(VI) highly unstable toxic form to Cr(III) form which is stable nontoxic form. This conversion is taken place by either direct or indirect way by different prokaryotic (Colberg, 1995) as well as eukaryotic organisms (Glick, 2003, Matheickal *et al.*, 1999). Chromate compounds are effectively adsorbed and transported across the cell membranes of variety of

organisms. Microorganisms are mainly utilized for bioremediation of chromium in which both aerobic and anaerobic microorganisms can do conversion of Cr(VI) form to Cr(III) form. This conversion involves reduction process taken place in two to three steps. The process of Cr(VI) reduction is governed in presence of oxygen by reduction of Cr(VI) in to Cr5+ and/or Cr4+ which are synthesized momentarily and readily reduced to Cr(III). The reduction process is either governed by spontaneous way or by different enzymes (Wvelyne et al., 2014). Electrophiles and neucleophiles are also important in Cr remediation. E.g. NADH, NADPH and electrons act as neucleophiles in Cr reduction and process utilizes an enzyme, Cr6+ reductase ChrR.() In situ remediation is also very effective means of Cr remediation due to frequent occurrence of anaerobic organisms. In anaerobic condition, Cr(VI) acts as a and accept electrons from various biomolecules like strong electrophile carbohydrates, lipids, proteins and cytochrome b and c which were commonly found in enzymatic anaerobic reduction (). Other important a remediation phenomen of Cr is phytoremediation in which plants accumulate metals from contaminated soil and thus its concentration is reduced in soil. Plants have capability to absorb wide range of heavy metals and accumulate them in upper parts (Raskin et al., 1994; Cunningham et al., 1994). They also possess several enzymes which can do reduction of Cr(VI) in Cr(III) (Chandrakant S., 2011). Not only plants and microbes other organisms like yeast also effectively remove Cr from polluted sites. Thus, use of various organisms results in remediation of Cr and referred as bioremediation.

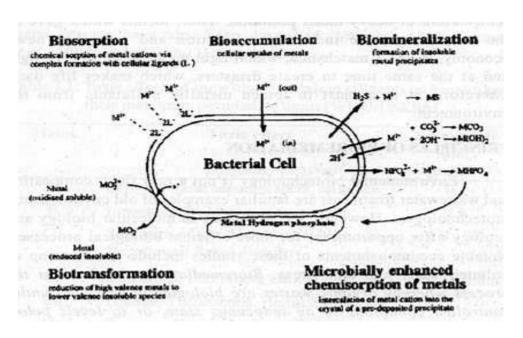


Fig 1. Different interaction of microbes with metal

- 2.3 Various approaches of bioremediation of metals: There are different approaches of heavy metal bioremediation which involves various organisms and techniques listed as under.
 - 1) Bioleaching: It is referred as removal of metals from soil waste
 - 2) Biosorption: It can be referred as removal of metals from aqueous waste. Isolation of metal ions from solid waste is governed mainly by acid or chelating agents synthesized by microorganisms but if the contaminant is within water stream or effluent then it is all to gather different story. In case of aqueous contaminant removal technique either governed by metabolism independent or metabolism dependent manners by microbes. The microbial biomass taken may be dead or viable and one can either suspend microbial biomass freely in to the medium of can immobilize it to reuse again. The main microbial processes involved in remediation of metal ions are as follows:
 - Intracellular accumulation
 - Oxidation- reduction reactions
 - Extracellular precipitation
 - Extracellular complexing
 - Adsorption to cell surface
 - Volatilization
 - 3) Biostimulation: It is the technique of remediation which utilizes activities for enhancement of microbial degradation which is held by incorporation of stimulants like inorganic or organic nutrients to the contaminated site and mainly used for soil contamination (Sang-Hwan *et al.*, 2007).
 - 4) Bioaugmentation: This technique is very unique and involves transfer of microbial biomass which has potential to degrade the contaminant and also support the indigenous microbes. It also utilizes genetically altered organisms.
 - 5) Phytoremediation: The plants have capability to remediate and detoxify the contaminated site by different approaches like Phytoextration, Phytostabilizaton, Rhizofiltration, and Phytotransformation which all are included under phytoremediation. (Palmorth, 2006; Ghosh and Singh, 2003).
 - Phytostabilization: In this technique plants are grown and used for stabilizing the soil which reduces bioavailability of land to metal contaminants. In this case plants become resistant to toxic heavy metals but accumulate metal within their parts which become disadvantage to the environment. (Latha *et al.*, 2004).
 - Rhizofiltration: This technique involves plants whose roots are used to adsorb metal contaminant from the soil or aquifers and thus one have to harvest and use whole plant for remediation. (Latha *et al.*, 2004).
 - Phytoextraction: In this case also plants are used but they must be hyper accumulator as contaminant is accumulated in their aerial parts so if

metals are present in very high concentration then also this technique is beneficial.

2.4 Microorganisms involved in bioremediation of chromium :

Bioremediation of chromium involves both aerobic as well as anaerobic type of remediation techniques which are governed by various microorganisms. Numerous microorganisms like bacteria, fungi, algae and yeast have capability to rectify metal contamination from soil or water. (White et al., 1997; Vieira and Volesky, 2000). Such microorganisms become resistant to toxic metals and reduce the concentration of heavy metals from contaminated sites. The mechanisms to eliminate the heavy metals take in the influx and accumulation of metal ions inside the cell which is later reduced to non toxic form. The first step is biosorption of metals and the excellent biosorbents are P. aeruginosa, Bacillus, Pseudomonas, Streptomyces and Mycobacterium like genera. () Large number of bacterial strains was isolated and reported to have capability to remediate toxic metals frompoluuted sites which are listed in table (3.1) (Vidali, 2001). The former reports revealed another potent microorganism capable of metal remediation is fungal biomass. The reason is that it has higher cell wall surface area due to mycelial structure and thus higher metal binding capacity. The outstanding genera of some fungal as well as yeast are Aspergillus, Streptoverticullum, Rhizopus and Sacchromyces. (Fathima Benazir *et al.*,2010)

S.No	Metals	Degrading Microorganisms	Reference
1.	Cr	Pseudomonas aeruginosa, Bacillus subtilis, Sacchromyces cerevisiae	Fathima Benazir et al (2010)
2.	Cd	Alcaligenes sp, Psedomonas sp, Moraxella sp	Springael et al (1993)
3.	Ni	Bacillus subtilis, P. licheniformis	Holan & Volesky (1994)
4.	Ag	Streptomyces noursei	Mattuschka et al (1993)
5.	Au	Aspergillus niger Chlorella pyrenoidosa	Kuyucak and Volesky, 1988 Darnall <i>et al</i> , 1988
6.	Co	Sacchromyces cerevisiae	Brady and Duncan, 1993
7.	Cu	Cardida tropicalis Bacillus licheniformis	Mattuschka et al (1993) Beveridge, 1986
8.	Fe	Bacillus subtilis	Beveridge, 1986
9.	Hg	Penicillum chrysogenum	Nemec et al, 1977
10.	Mn	Bacillus licheniformis	Beveridge, 1986
11.	Pb	Penicillum chrysogenum	Niu et al, 1993
12.	U	Sacchromyces cerevisiae	Volesky 1986
13.	Th	Sacchromyces cerevisiae	Brierley et al, 1986
14.	Zn	Rhizopus arrhizus Penicillium chrysogenum Penicillum spinulosum	Tobin et al, 1984 Niu et al, 1993 Townsley et al, 1986

Table 3.1: Various microorganisms having metal detoxification potential

There are various bacterial species which are able to survive in the presence of toxic heavy metal pollution and become resistant to it. (Dhal et al., 2010) First hexavalent chromium resistant species which was isolated from contaminated water was *Pseudomonas sp.*(Viti C. and Giovannetti L., 2001) The site like electroplating industry was investigated for chromium reducing bacterial strain whose capability of Cr reduction was higher than other procured strains. The strain isolated from the site was Bacillus coagulans which was capable of reducing Cr (VI) by incorporating lactose as carbon source, soluble enzyme and malate as electron donor added externally. The isolates revealed very high potential of Cr reduction which was 88 % of 450 umol/L was utilized within 48 hrs. In that study reports revealed reduction of Cr by similar manner as sulphate. (Cheung et al., 2003) Srinath et al. investigated the two strains of Bacilli sp. Bacillus circulans and Bacillus megaterium revealed biosoption of hexavalant Cr in which both live nad dead cells were investigated. 23.8 and 39.9 mg chromium/g dry weight was biosorbed by live and dead cells of *Bacillus circulans* respectively where as 15.7 and 30.7 mg chromium/g dry weight was biosorbed by live and dead ones of Bacillus megaterium respectively. Various concentrations of Cr (VI) was reduced successfully (98%) within 168 hrs by Bravibacterium sp. CrT-13, CrT-11, CrT-12, CrT-14 which were isolated from extremely polluted site of TCCL (Tamil Nadu Chromates and Chemicals Limited) The isolated and investigated strain was capable of degrading multiple heavy metals like (Ni, Zn, Mn, Cu, Co, Pb) and had wide range of growth range in terms of pH (5 to 9) and temperature (24 to 42 °C). The maximum Cr (VI) reduction (5.6 mg Cr(VI)/g of soil within 20 days) was reported using both aerobic and anaerobic conditions and of 15±1.0 mg/g of soil bacterial culture concentration and 50 mg of molasses/g of soil as carbon source. (Jeyasingh et al., 2005) One report suggested that not only one strain but a metal reducing consortium was developed which contains various organisms like Bacillus subtilis, Pseudomonas aeruginosa and Saccharomyces cerevisiae and their immobilized beads can reduced 770 mg/l of Cr(VI) to very low level that is to 5.2 - 5.7 mg/L. The highest reducing activity was observed by S. cerevisiae - P. aeruginosa consortia. (Fathima et al., 2010) One of the important phenomena of Cr reduction is biosorption. One investigational report revealed that biosorption by Carica papaya plant dry stem which act as a matrix to colonize the fungal strain Fusarium oxysporum. The fungus performs the biosorption and ultimately Cr remediation up to 90% efficiency after 5 days of incubation time (Amatussalam et al., 2011). Liyuan Chai (2009) has reported that the strain Pannonibacter phragmitetus isolated from the area of steel alloy factory showed remarkable potential of Cr removal and in presence of nutrients, 98.7% decline in Cr (VI) concentration was successfully reported. myceliums mainly involved in biosorption and in such away reduce the concentration of Cr. The mechanism of biosorption involves binding of reactive groups to the cell surface followed by its absorption. One of the reports revealed biosorption of Cr (VI) on cell surface of Trichoderma in aerobic condition whose maximum efficiency was 97.39% at pH 5.5. Here, pH is very important as at lower pH (< 3) efficiency of Cr removal is decreased (Liliana et al., 2008). Other species like Penicillium, Fusarium oxysporium and Aspergillus sp. also showed maximum 80% efficiency of Cr removal (Amatussalam et al., 2011; Maria et al., 2012).

- 2.5 Advantages and disadvantages of Bioremediation:
- It is a natural process and is therefore perceived by the public as an acceptable waste treatment process for contaminated material such as soil. Microbes able to degrade the contamination increase in number when contaminant is present; when the contaminant degraded, the biodegradative population declines.
- Less energy is required as compared to other technologies.

- Bioremediation can prove less expensive than other technologies that are used for cleanup of hazardous waste.
- Bioremediation is useful for the complete destruction of a wide variety of contaminants. Many compounds that are legally considered to be hazardous can be transformed to harmless products.
- Instead of transferring contaminants from one environment medium to another, for e.g. from land to water or air, the complete destruction of target pollutants is possible.
- Biological processes are often highly specific. Important site factors required for success include the presence of metabolically capable microbial populations, suitable environmental growth conditions, and appropriate levels of nutrients and contaminants.
- Bioremediation often takes longer than other treatment options, such as excavation and removal of soil or incineration.
- Contaminants may be present as solids, liquids and gases.
- Dynamic process, difficult to predict future effectiveness.

4 References:

- 1) A Amatussalam, M N Abubacker and R Babu Rajendran, "In situ Carica papaya stem matrix and Fusarium oxysporum (NCBT-156) mediated bioremediation of chromium", Indian Journal of Experimental Biology Vol. 49, pp. 925-931, December 2011.
- 2) Agency for Toxic Substances and Disease Registry (ATSDR), ToxFAQs for Chromium, www.atsdr.cdc.gov/tfacts7.html (Accessed 10/6/09)
- 3) C. Viti, L. Giovannetti, The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms, Ann. Microbiol. 51 (2001) 201–213.
- 4) Colberg P. J. S. and Young L. Y., 1995. Anaerobic degradation of non-halogenated homocyclic aromatic compounds coupled with nitrate, Iron, or Sulfate reduction. In: Microbial transformation and degradation of toxic organic Chemicals. Wiley-Liss,NewYork, 307-330.
- 5) EPA, 2001. Remediation Case Studies. Federal Remediation Technology Roundtable. Report No. 542- F-01-032.
- 6) EPA., 2002. Handbook on Treatment of Hazardous Waste Contaminated Soils.
- 7) EPA., 2006. Engineering Issue: and Biodegradation Technologies for Remediation of Contaminated Sites, : 6-15.
- 8) Fathima Benazir, J., Suganthi, R., Rajvel, D., Padmini Pooja, M., Mathitumilan, B. 2010. Bioremediation of chromium in tannery effluent by microbial consortia. *African J. Biotechnol.*, 9(21): 3140–3143.
- 9) Ghosh, M., Singh, S.P., Purohit, S.B. 2003. Comparative uptake and Phytoextraction by accumulator and weed species
- 10) Glick B. R., 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the Environment Biotechnol.,: 383-93.
- 11) J. Fathima Benazir, R. Suganthi, D. Rajvel, M. Padmini Pooja and B. Mathithumilan, "Bioremediation of chromium in tannery effluent by microbial consortia", *African Journal of Biotechnology* Vol. 9 (21), pp. 3140-3143, 24 May, 2010.
- 12) Jacobs, J., Hardison, R.L., and Rouse, J.V, 'In-situ remediation of heavy metals using sulfur-based treatment technologies', Hydrovisions, Vol.10, pp.1–4 (2001).

- 13) Jeyasingh.J, Ligy Philip 'Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions', Journal of Hazardous Materials Vol.118, pp.113–120, 2005
- 14) K.H. Cheung, Ji-Dong Gu, "Reduction of chromate (CrO2) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria", Chemosphere Vol. 52,pp. 1523–1529 (2003).
- 15) Kato I. and Nagai S., Treatment of chromium containing wastewater, *Japan Kokai Tokkyo Koho*, JP03, 224–691 (1991)
- 16) Latha, M.R., Indirani, R., Kamaraj, S. 2004. Bioremediation of polluted soil. *Agri. Rev.*, 25(4): 252–266.
- 17) Liliana Morales-Barrera, Flor de Mar´ıa Guill´en-Jim´enez , Alicia Ortiz-Moreno, Thelma Lilia Villegas-Garrido, Antonio
- 18) Liyuan Chai, Shunhong Huang, Zhihui Yang*, Bing Peng, Yan Huang and Yuehui Chen, "Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing sla", *Journal of Hazardous Materials*, pp.no:516–522 2009.
- 19) María M. Martorell , Pablo M. Fernández , Julia I. Fariña, Lucía I.C. Figueroa 'Cr(VI) reduction by cell-free extracts of Pichia jadinii and Pichia anomala isolated from textile-dye factory effluents', International Journal of Biodeterioration & Biodegradation Vol.71, pp. 80-85, 2012.
- 20) Matheickal, J.T., Yu, Q. 1999. Biosorption of lead (II) and copper (II) from aqueous solution by pretreated biomass of Australian marine algae. *Biores. Technol.*, 69: 223–229.
- 21) Mishra, S., Singh, V., Srivastava, S., Srivastava, R., Srivastava, M.M., Dass, S., Satsangi, G.P. and Prakash, SStudies on uptake of trivalent and hexavalent chromium by maize (Zea mays). *Journal of Food Chemical Toxicology*.Vol. 33, 393-397, 1995.
- 22) Palmroth, M.R.T., Pichtel, J., Puhakka, J.A. 2002. Phytoremediation of subarctic soil contaminated with diesel fuel. *Biores. Technol.*, 84: 221–228.
- 23) Presss information Bureau, Govt. of India. Pib.nic.in/release/,9.11.2011
- 24) Rita Evelyne. J and Ravisankar. V, 2014 BIOREMEDIATION OF CHROMIUM CONTAMINATION- A REVIEW, International Journal of Research In Earth & Environmental Sciences, ISSN 2311-2484. Vol. 1, No. 6.
- 25) Sandoval-Cabrera, C'esar Hugo Hern'andez- Rodr'iguez and Eliseo Cristiani-Urbina, "Isolation, identification and characterization of a *Hypocrea tawa* strain with high Cr(VI) reduction potential", *Journal of Biochemical Engineering* Vol. 40, pp. 284–292, 2008.
- 26) Sang-Hwan, L., Seokho, L., Dae-Yeon, K. 2007. Degradation characteristics of waste lubricants under different nutrient conditions. *J. Hazardous Materials*, 143: 65–72.
- 27) Srinath, T. Verma, P.W. Ramteke and S.K. Garg, 2002 Chromium (VI) biosorption and bioaccumulation b chromate resistant bacteria. Tannery Technology 48(4): 427-435.
- 28) Sudarshan Singh Rathore et al., Microbial removal of Hexavalent chromium from chromite waste dump, *Malaya Journal of Biosciences 2014*, *1*(2):109–116
- 29) Sudarshan Singh Rathore1, 2, R. K. Tiwary1, Kumar Birendra1 and P. Padma2*,2014, Microbial removal of Hexavalent chromium from chromite waste dump, Malaya journal of Biosciences, 1(2):109–116
- 30) Tamil Nadu Pollution Control Board: 'Revised Action Plan for Critically polluted Area Ranipet', Nov, 2010].

- 31) Thassitou P. K. and Arvanitoyannis I. S., 2001. Bioremediation: a novel approach to food waste management. Trends in Food Sci. Technol., 12:185-196.
- 32) USEPA, 2010. IRIS, Toxicological Review of Hexavalent Chromium (2010 External Review Draft). U.S. Environmental Protection Agency, Washington, DC EPA/635/R-10/004A, 2010.
- 33) Vidali M. 2001 Bioremediation: An overview. Pure Applied Chemistry, :1163-1172.
- 34) Vieira R. and Volesky B., 2000. Biosorption: a solution to pollution? Internatl Microbiol. : 17-24
- 35) White C., Sayer J. A., Gadd G. M., 1997. Microbial solubilization and immobilization of toxic metals: key biochemical processes for treatment of contamination. FEMS Microbiol Rev., : 503-516.

Contamination Of Toxic Metals In Nikol Lake, Ahmadabad, Gujarat, India.

Sanjay D. Vediya¹ and Satish S. Patel²

P.G. Center in Botany,

¹Sir P.T. Science Collage, Modasa (Gujarat), India.

²Naroda Enviro projects ltd GIDC Naroda Ahemedabad

E-Mail:shrisatish82@gmail.com, drsanjuvediya@gmail.com

ABSTRACT

Present study was focused on the Contamination of Toxic metals in water bodies Of Nikol Lake Ahmadabad. During drought period the water level decreased and the concentrations of the most Toxic Heavy Metal parameters were increased. Heavy metals parameters include (As, Cd, and Pb). In Water of Nikol lake during January-2009 to December-2009. The minimum and maximum values of surface water As, Cd, and Pb were: 0.74 to 0.1ppm; 10.5 to 2.71 ppm; 1.9 to 0.012 ppm; respectively.

Key word: Nikol Lake, Water bodies, Heavy Toxic Metals.

INTRODUCTION

Heavy metal has little to do with density but concerns chemical properties. Heavy metals include lead (Pb), cadmium (Cd) and the arsenic (As). Environment is defined as the totality of circumstances surrounding an organism or group of organism's especi- ally, the combination of external physical conditions that affect and influence the growth, development and survival of organisms (Farlex, 2005). It consists of the flora, fauna and the abiotic, and includes the aquatic, terrestrial and atmospheric habitats. The environment is considered in terms of the most tangible aspects like air, water and food, and the less tangible, though no less important, the communities we live in (Gore, 1997). A pollutant is any substance in the environment, which causes objection- able effects, impairing the welfare of the environment, reducing the quality of life and may eventually cause death. Such a substance has to be present in the environment beyond a set or tolerance limit, which could be either a desirable or acceptable limit. Hence, environ- mental pollution is the presence of a pollutant in the envi- ronment; air, water

and soil, which may be poisonous or toxic and will cause harm to living things in the polluted environment.

Ahmadabad is unique in the whole of India in matter of environmental neatness and flourishing conditions and it is superior to other cities in the excellence of its monuments. Ahmadabad Urban development Authority (AUDA) carried out a survey of 645 lakes and identified 22 lakes which have been severely degraded. AUDA proposes to undertake works for revival, development of catchments area and beautification of lakes under the present project. Of these, Nikol Lake were studied which are located at Nikol Village its total storage capacity is 10.5 Caore liters. Lake Desalting Area is 2498 m³ and peripheral development works including landscaping: recreation facilities are such as Amphi children park facilities and percolation wells to recharge ground water table; AUDA has commenced work on this lake also through own resources. In the study area Heavy metal weathering is predominate. Climatic features of Nikol are characterized by dry climate, uncertain rainfall pattern and great variation in higher ranged for toxic metals during January-2009 to December-2009.

The problem and major environmental concerns associated with the dispersal or disposal of Industrial and urban wastes generated by human activities are the contamination of the water and soil and Aquatic Ecosystem. Pollution occurs when a product added to our natural environment adversely affects nature's ability to dispose it off. A pollutant is something which adversely interferes with health, comfort, property or environment of the people. Generally, most pollutants are introduced in the environment as sewage, waste, accidental discharge and as compounds used to protect plants and animals. There are many types of pollution such as air pollution, soil pollution, water pollution and oil pollution (Misra, S.G. and D. Mani, 1991)

Municipal wastewater effluents may contain a number of toxic elements, including heavy metals, Because under practical conditions wastes from many small and informal industrial sites are directly discharged into the common sewer system. These toxic elements are normally present in small amounts and, hence, they are called trace elements. Some of them may be removed during the treatment process but others will persist and could present phytotoxic problems. Thus, municipal wastewater effluents should be checked for trace element toxicity hazards, particularly when trace element contamination is suspected (Pescod, M.B., 1992).

Controlled and uncontrolled disposal of wastes, accidental and process spillage, mining and smelting of metallic ferrous ores, sewage sludge application to agricultural soils are responsible

for the migration of contaminants into no contaminated sites as dust or lactates and contribute towards contamination of our ecosystem (Ghosh and Singh, 2005). A wide range of inorganic and organic compounds cause contamination especially when they are exposed to rain, its decomposition produces noxious odor, thereby, constituting a health hazard (Weiss, 1974; *Ogbonna et al., 2006*). Major components of these compounds include heavy metals, combustible and putrid cable substances, hazardous wastes, explosives and petroleum products (Adriano, 1986; Alloway, 1990). Soil and sediments microorganisms can degrade organic contaminants, while metals need immobilization or physical removal because metals at higher concentrations are toxic and can cause oxidative stress by formation of free radicals (Henry, 2000) and thus may render the land unsuitable for plant growth and destroy the biodiversity. Soils provide a suitable natural environment for biodegradation of wastes and therefore serve as a sink for the adsorption and absorption of ions and as a medium for the restoration of vegetation and normal land use (Ekundayo, 2003). Because of the shallowness of water table and nature of soil types in Port Harcourt municipality.

MATERIAL AND METHODS

The sampling were Collocated at different Point of the Nikol Lake. The present study is focused on water quality assessment for period of one year i.e January 2009 to December 2009. Month wise sampling is done i.e. January to December) for testing the water samples were collected in different sterile Plastics bottles. After collection of the samples the bottles were tightly capped and were immediately transported to the laboratory to avoid any unpredictable changes in the characteristics. Suitable preservation techniques were adopted as per the standard methods, APHA (1998). Water samples were digested using the method described in APHA (1998) As, Pb and Cd. are determined by Atomic Absorption Spectrophotometer.

RESULTS AND DISCUSSION

The highest concentration of **Arsenic** was recorded at Nikol lake in November -2009 (0.74ppm) and lowest concentration was recorded in August -2009(0.1ppm), during January-2009 to December-2009 Arsenic is a toxic and carcinogenic semi-metal whose sources in nature include mineral dissolution and volcanic eruption (Bhumbla et al., 1994). Surface water (rivers, lakes, reservoirs and ponds), ground water (aquifers) and rain water. These sources are very variable in terms of arsenic risk. Alongside obvious point sources of arsenic contamination, high

concentrations are mainly found in groundwater. These are where the greatest number of, as yet unidentified; sources are likely to be found. This review therefore focuses on the factors controlling arsenic concentrations in groundwater (*Pauline L Smedley and David G Kinniburgh*). Hazardous waste disposal is another major source of arsenic contamination of soil and aquatic systems. Arsenic leaching from a landfill can be transported through soil to ground water and contaminate lake sediments (Lackovic et al., 1997; Hounslow, 1980). Lake sediments can accumulate a significant quantity of arsenic due to arsenic migration in anoxic ground waters (Subramanian et al., 1997).

The highest concentration of **Cadmium** was recorded at Nikol lake in March -2009(10.5 ppm) and lowest concentration was in August -2009 (2.71 ppm), during January-2009 to December-2009. The most important sources of Cd are metal industry, plastics and sewages (Allen, 1989) and some special phosphate fertilizers that contain Cd. Because of its high toxicity and great solubility in water Cd is a dangerous pollutant (Liu *et al.*, 2006). It is very toxic to animals and plants and plants' exposure to Cd causes reductions in photosynthesis, water and nutrient uptake (Sanita di Toppi & Gabbrielli, 1999). Kashyap, Sahi, Shukla and Gupta, 2000: Reported to Cadmium is regarded as one of the most toxic elements in the environment. Its persistence in the environment, rapid uptake and accumulation in the food-chain contributes to its potential hazards. Recommended level of cadmium in drinking water is 0.01 g/ml (US and Indian Standards) and 0.005g/ml according to WHO guideline values.

The highest concentration of **Lead** was recorded at Nikol lake in March- April: 2009(1.9 ppm) and lowest concentration was in January - December: 2009 (0.012ppm), during January-2009 to December-2009. This is an indication of lead pollution onshore. The water from Lake Nikol had significantly higher lead content than the lake water. This is an indication that there was substantial lead pollution along the Lake course. Lead content in all the water samples from different Point, including Surface water, was above the World Health Organization (WHO) maximum safe limits for drinking water of $10 \, \mu g/L$.

SUMMARY AND CONCLUSION

Ahmadabad city is situated on the River bank of Sabarmati and in Around Urban and Industrial Areas at Gujarat. The Water samples were collected from Different Point and monthly Collected

of Nikol Lake. The higher ranged of Cadmium, Arsenic and Lead were above BSI and WHO Standards. The Heavy metal Contamination like Cd>Pb and >As Were studied comparatively during January-2009 to December-2009. The results suggested that water was not suitable for Drinking Purpose.

ACKNOWLEDGMENT

We gratefully acknowledge The Sir P.T. Science college P.G. Center of Biology Department and spatial planning for Support and Laboratory facility this study.

REFERENCES

Abdel-Satar, A.M.; A.A. Elewa,; A.K.T. Mekki, and M.E. Gohar(2003) Some aspects on trace elements and major cations of Lake Qarun sediment, Egypt. Bull. Fac. Sci., Zagazig Univ., 25(2): 77 – 97

Adriano, DC (1986) Trace elements in the terrestrial environment. Springer Verlag, New York, 533pp

A.K. Kashyap, A.N. Sahi, S.P. Shukla And R.K. Gupta(2000) Metal Concentrations In Water Bodies Of Schirmacher Oasis, Antarctica : An Assessment, Seventeenth Indian Expedition to Antarctica, Scientific Report, Department of Ocean Development, Technical Publication No. 15, PP 211-219

Allen, S.E.(1989) Analysis of Ecological Material. Blackwell Scientific Publications, Oxford

Alloway, B J (1990) Heavy metals in soils (ed.Alloway, B J), Blackie, Glasgow A.P.H.A. (1998) *Standard Methods for Examination of Water and Waste water* :20th Ed. American Public Health Association ,Washington, D.C.

Bhumbla, D.K., Keefer, R.F(1994) Arsenic mobilization and bioavailability in soil. In: Nriagu, J.O. (Ed.), Arsenic in the Environment, Part I: Cycling and Characterization. John Wiley and Sons, New York, pp. 62–66

Ekundayo, EO(2003) Suitability of waste disposal sites for refuse disposal in Benin city, Nigeria Farlex I (2005) Definition: Environment, the Free Dictionary. Farlex Inc. Publishing, USA (http://www.thefreedictionary.com/).

Ghosh, M ; Singh, SP(2005)A review of phytoremediation of heavy metals and utilization of it's by products. Applied Ecology and Environmental Research 3(1): 1-18

Gore A (1997): Respect the land, our precious plant, Time magazine, 150(17A):8-9

Henry, JR(2000) An Overview of Phytoremediation of Lead and Mercury – NNEMS Report, Washington, D.C. p 3-9

^{*}corresponding author:shrisatish82@gmail.com

Hounslow, A.W(1980) Ground water geochemistry: arsenic in landfills. Ground Water 18 (4), 331–333

IARC and WHO(1990) *Chromium, nickel and welding Lyon*: International Agency for research on cancer: Distributed for the international agency for research on cancer by the secretariate of the World Health Organization. p. 677

Lackovic, J.A., Nikolaidis, N.P (1997) Technical Report ERI-97.01: Mobility of Arsenic in a Glaciated Aquifer. University of Connecticut, Storrs, CT

Liu, D.H.M., M. Wang, J.H. Zou and W.S. Jiang(2006) Uptake and accumulation of cadmium and some nutrient ions by roots and shoots of maize (Zea mays). Pak. J. Bot., 38 (3): 701-709

Misra, S.G. and D. Mani (1991) *Soil Pollution*: Efficient offset Printer ABC, New Delhi, India, pp:6-42

Ogbonna, D N; Igbenijie, M ; Isirimah, N O(2006)Studies on the inorganic chemicals and microbial contamination of health importance in ground water resources in Port Harcourt, Rivers State. Journal of Applied Science 10:2257-2262

Pauline L Smedley and David G Kinniburgh: Chapter 1. Source and behaviour of arsenic in natural waters, British Geological Survey, Wallingford, Oxon OX10 8BB, U.K

Pescod, M.B., (1992) Wastewater Treatment and Use in Agriculture. Food and Agriculture Organization (FAO).

Sanita di Toppi. L and R. Gabbrielli(1999) *Response to cadmium in higher plants*. Environ. Exp.Bot., 41: 105-130

Subramanian, K.S., Viraraghavan, T., Phommavong, T., Tanjore, S(1997) Manganese greensand for removal of arsenic in drinking water. Canadian Journal of Water Quality Research 32 (3), 551–561

Weiss, A(1974) Sanitary Landfill Technology: Noyes Data Corporation, England 204pp WHO/IPCS(1991) Environmental Health Criteria: Inorganic Mercury. World Health Organization, Geneva-118

A.K. Kashyap, A.N. Sahi, S.P. Shukla And R.K. Gupta(2000)*Metal Concentrations In Water Bodies Of Schirmacher Oasis, Antarctica*: An Assessment, Seventeenth Indian Expedition to Antarctica, Scientific Report, Department of Ocean Development, Technical Publication No. 15, PP 211-219

Table: 1 Analysis of Heavy Toxic Metals (**ppm**) in water of **Nikol Lake** during the year 2009 for comparative study of pollution.

Parameters	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
As	0.23	0.51	0.42	0.23	0.27	0.21	0.11	0.1	0.41	0.14	0.74	0.26
Cd	9.63	7.45	10.5	7.12	5.44	6.21	7.32	2.71	8.12	9.71	6.21	4.21

ISSN 2456-1002

Pb 0.012 0.07 1.9 1.9 0.027 0.014 0.073 0.042 0.074 0.041 0.022 0.012	Pb	0.012	0.07	1.9	1.9	0.027	0.014	0.073	0.042	0.074	0.041	0.022	0.012
---	----	-------	------	-----	-----	-------	-------	-------	-------	-------	-------	-------	-------

Nikol lake at Ahmedabad , Gujarat

અંદાજપત્ર અને તેની મહત્વની જોગવાઇઓ

ર્ડા. ધવલકુમાર પી દવે આસીસ્ટન્ટ પ્રોફેસર શ્રી એચ. એસ. શાહ કોલેજ ઓફ કોમર્સ, મોડાસા.

બેલવેઘર એડવાઇઝરના સ્થાપક અને કાર્યવાહક ભાગીદાર બ્રિજેશ દામોદરનું કહેવું છે કે, અંદાજપત્ર એક એવો ઘટનાક્રમ છે કે જેમાં સરકાર તેના માધ્યમથી વેરા અંગેની દરસ્ખાતો જાહેર કરીને નાણાંકિય સાધનો ઊભા કરવાનું આયોજન કરે છે. આ સંજોગોમાં રોકાણકારોએ વેરા અંગેની દરસ્ખાતોમાં થયેલા ફેરફારોને ધ્યાનમાં લીધા વિના લાંબા ગાળાની ગણતરીઓ મુકીને સંપતિનું સર્જન થાય તે રીતે એસેટ એલોકેશન કરવું જોઇએ. કારણકે ભારતીય અર્થતંત્રમાં રોકાણો ઘીમા પડી રહયાં હોવા છતાં સરકાર આ સંદર્ભમાં ખાસ કોઇ કાર્યવાહી કરી રહી નથી. જે એક ચિંતાનો વિષય છે. જેમ કે નાણાંકીય વર્ષ ૨૦૧૨માં રોકાણો જીડીપીના ૩૬ ટકા હતા. તે ઘટીને નાણાંકીય વર્ષ ૨૦૧૭માં ૨૭ ટકા પર આવી ગયા હોવાનું અનુંમાન CMIE ની આંકડાકીય વિગતો ઉપરથી સ્પષ્ટ થાય છે. તદ્દઉપરાંત અટવાયેલા પ્રોજેક્ટના આંકડો ડિસેમ્બર ૨૦૧૬ની સ્થિતિએ રૂા. ૧૧.૭ લાખ કરોડ પર હતો. આ ઉપરાંત જાહેર ક્ષેત્રની બેન્કોમાં NPA ના મોરચે વધુ ભયાનક થવા જઇ રહી છે. 2

આ વર્ષના અંદાજપત્રમાં પ્રત્યેક રૂા. માંથી ૧૯ પૈસા માર્કેટ બોરોઈ ગમાંથી આવશે. અને ૧૮ પૈસાની વ્યાજ તરીકે ચૂકવણી કરવામાં આવશે. વર્ષ ૨૦૧૭–૧૮ના અંદાજપત્રમાં ૬૮ પૈસા પ્રત્યક્ષ અને પરોક્ષ વેરા વસૂલી મારફતથી આવશે. કોર્પોરેટ વેરાની વસૂલાતનો ૧૯ પૈસા, સર્વિસ ટેકસમાંથી ૧૦ પૈસા વેરા તરીકે વસૂલવામાં આવશે. બીજી નકારાત્મક વાત આ અંદાજપત્રની એ છે કે વાર્ષિક રૂા. ૧૦ લાખ થી રૂા. ૧૫ લાખ ધરાવતો જે વર્ગ છે તે આવકવેરો ભરવા તૈયાર થતો નથી, તેનું કારણ એ છે કે ૩૦ ટકા જેટલો વેરાનો ઊંચો દર ગણાવી શકાય. સાથે સાથે ગરીબી નિવારણની જુદી જુદી યોજનાઓમાં મોટાપાયે નાણાંની હેરફેર નોટબંધીના સમયે થવા પામી હતી તેવા સમાચારો મળ્યા છે. છતાં પણ સરકાર પ્રાયોગિક ધોરણે પણ કોઇ જ કાર્યવાહી કરવાનો નિર્ણય લીધો નથી. તદ્દઉપરાંત આ અંગેની કોઇ નકકર જાહેરાત થવા પામી નથી. એવી જ રીતે આ વખતના અંદાજપત્રમાં STTમાં વધારો કરવામાં આવશે તેવા સંકેતો જરૂર પ્રાપ્ત થયા હતા, છતાં કોઇ વધારો થયો નહીં જે નકારાત્મક બાબત કહી શકાય. કારણકે નાણાંકિય વર્ષ ૨૦૧૭–૨૦૧૮માં શેરવેચાણનું લક્ષ્યાંક રૂા. ૭૮,૦૦૦ કરોડ નકકી કરવામાં આવ્યું

¹ સૈકત નીયોગી, ઘી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ૪ તા. ૦૨/૦૨/૨૦૧૭

² સુનીલ જૈન, ઘી ફ્રાઇનાન્સિયલ એકપ્રેસ, પાન નં. ૪ તા. ૦૨/૦૨/૨૦૧૭

³ પીટીઆઇ, ઘી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ૭ તા. ૦૨/૦૨/૨૦૧૭

છે. જો કે નાણાંકિય વર્ષ ૨૦૧૭માં તેઓ નિયત લક્ષ્યાંકની સામે માત્ર ૫૦ ટકા જ કામગીરી કરી શકયા છે. વધુમાં વ્યુવહાત્મક ડીસઈનવેસ્ટમેન્ટમાં તેમણે રૂા. ૧૫,૦૦૦ કરોડનું લક્ષ્યાંક નકકી કર્યું છે. જે નાણાંકીય વર્ષ ૨૦૧૬–૨૦૧૭માં નિયત કરવામાં આવેલ રૂા. ૨૦,૫૦૦ કરોડના લક્ષ્યાંક કરતા ઓછું છે. 5

ઉપરોક્ત બાબતો વર્ષ ૨૦૧૭–૨૦૧૮ના અંદાજપત્રની નકારાત્મક હોવા છતાં આ અંદાજપત્રમાં હકારાત્મક બાબતો ઘણી જોવા મળી છે. જેમ કે માળખાકીય સવલતોના ક્ષેત્રના કિસ્સામાં જે અપેક્ષા હતી તેના કરતાં પણ વધારે આ વખતના અંદાજપત્રમાં રકમ ફાળવવામાં આવી છે. કુલ અંદાજપત્રીય ફાળવણી રૂા. ૨૧.૪૭ કરોડ જેટલી છે, તે પૈકી ૧૮ ટકા એટલે કે રૂા. ૩.૯૬ લાખ કરોડની ફાળવણી આ ક્ષેત્ર માટે ફાળવણી કરવામાં આવી છે. આ ઉપરાંત અરૂંધિત ભટ્ટાચાર્યએ જણાવ્યું છે કે સમગ્ર દેશમાં MSMEs ૬.૬૭ લાખ યુનિટ છે. અને જેમનું ટર્નઓવર પ૦ કરોડનું છે તેઓ અત્યારસુધી ૩૦ ટકા વેરો ભરતા હતા તે ઘટાડીને આ વખતના અંદાજપત્રમાં ૨૫ ટકા કરી નાખ્યો છે. આ પગલાને કારણે MSMEs ક્ષેત્ર મોટા સાહસોની સરખામણીએ વધુ સ્પર્ધાત્મક બનશે અને ડિજિટલ સાધનો માટેનો વિકલ્પ સ્વીકારવા માટે ઉદ્યોગસાહસિકોને પ્રોત્સાહિત કરવા આવકવેરાનો દર નાના અને મધ્યમ કરદાતાઓ માટે ૮ ટકા હતો તે ઘટાડીને ૬ ટકા કરવામાં આવ્યો છે. ⁷

સબસીડીનું બીલ વર્ષ ૨૦૧૭–૨૦૧૮માં ગત વર્ષની સરખામણીમાં રૂા. ૭,૬૩૪ કરોડ જેટલું જ વધારે છે. નાણામંત્રી ફર્ટીલાઈઝરમાં સબસીડીની રકમ બદલ્યા વિના રૂા. ૭૦,૦૦૦ કરોડ રાખી છે. અને ખાદ્ય માટેની સહાયની ૨કમ રૂા. ૧૦,૦૦૦ કરોડના વધારા સાથે રૂા. ૧.૪૫ લાખ કરોડ પર પહોચી છે. બેન્કમાં મૂડી રોકાણના મોરચે નાણાંપ્રધાનનું રૂા. ૧૧,૦૦૦ કરોડની બચત કરવાનું આયોજન છે.

⁴ સુનીલ જૈન, ઘી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ૪ તા. ૦૩/૦૨/૨૦૧૭

⁵ પ્રશાંત શાહુ, ઘી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ર તા. ૦૪/૦૨/૨૦૧૭

⁶ વિનાયક ચેટર્જી, ધી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ૦૪, તા. ૦૩/૦૨/૨૦૧૭

⁷ અરૂંધતિ ભટ્ટાચાર્ય, ઘી કાઇનાન્સિયલ એકપ્રેસ, પાન નં. ૦૪, તા. ૦૩/૦૨/૨૦૧૭

⁸પ્રશાંત શાહુ, ધી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ર તા. ૦૪/૦૨/૨૦૧૭

આ વર્ષેનું બજેટ અને તેની ઉપર ર્નિભર દેશ

રીના સી દવે આસીસ્ટન્ટ પ્રોફેસર, સેમકોમ,એસ. પી. યુનિવર્સિટી, વલ્લભ વિદ્યાનગર.

કોઈપણ દેશની કેટલો સુવ્યવસ્થિત છે તે જાણવા માટે તે દેશના અને તેના અર્થતંત્રના સ્પર્શતા બજેટ વિશે જાણવું ખુબ જરૂરી છે. કારણકે બજેટમાં દશાવેલી આવક, જાવક, ખર્ચ, વેરા, કે પછી લોક કલ્યાણની નીતિ ઉપર આવકની ફાળવણી વિગેરેને સમજી શકાય છે. આવું જ આ વર્ષનું બજેટ કહી શકાય કારણકે તેમાં સરકારની પારદર્શકતા સાથે સાથે સરકારની સંવેદનશીલતા પણ જોઇ શકાય છે.

નાણાંકીય વર્ષ ૨૦૧૭–૨૦૧૮માં રાજકોષીય ખાદ્યને જીડીપીના ૩.૨ ટકા રાખવાનો નાણાંમંત્રીનો પ્રયત્ન આવકાર્ય છે. તદ્દઉપરાંત નાણાંઉછીના લેવાના ચોખ્ખા લક્ષ્યાંકમાં નાણાંકીય વર્ષ ૨૦૧૭–૨૦૧૮માં રૂા. ૨૦,૦૦૦ કરોડનો ઘટાડો કરવામાં આવ્યો હોવાથી વ્યાજ દર પરનં દબાણ ઓછં રહેશે.⁹ નાણાંકીય વર્ષ ૨૦૧૭–૨૦૧૮ના બજેટમાં માળખાકીય સવલતો માટે રૂા. ૩,૯૬,૧૩૫ કરોડની ફાળવણી કરવાની જાહેરાત કરી છે. જે ગયા વર્ષની સરખામણીમાં ૧૦.૫ ટકાનો વધારો બતાવે છે. આ ઉપરાંત આ વખતના બજેટમાં લગભગ ૫૭.૫ ટકા જેટલો હિસ્સો રેલ્વે. રસ્તાઓ અને ગ્રામ વિકાસ પર ખર્ચ કરવામાં આવશે. ગયા નાણાંકીય વર્ષ ૨૦૧૬–૨૦૧૭ના પ્રથમ નવ મહિનામાં ધોરીમાર્ગેનં નિર્માણ દૈનિક ૧૭ કિલો મીટર થતં હતં, પણ તેનં લક્ષ્યાંક દૈનિક ૪૧ કિલો મીટર હતં. જે ખરેખર ૫૦ ટકા પણ નથી તેવું શ્રી નિતિન ગડકારીનું કહેવું હતું. તેનું પરિણામ એ આવ્યું કે આ વખતના બજેટમાં જે માળખાકીય સવલતો માટે રૂા. ૩,૯૬,૧૩૫ કરોડની ફાળવણી કરી છે તેમાંથી કુલ ખર્ચના ૧૬.૩૮ ટકા થાય છે એટલે કે રૂા. ૬૪,૯૦૦ કરોડ માત્રને માત્ર ધોરીમાર્ગો પાછળ જ ખર્ચાશે. જે ગયા વર્ષની સરખામણીએ ૧૨ ટકા વધારે છે. તેમ નાણાંમંત્રી શ્રી અરૂણ જેટલીએ જણાવ્યું હતું. આ રૂા. ૬૪,૯૦૦ કરોડનું પણ વર્ગીકરણ કરીએ તો તેમાંથી રૂા. ૨૭,૦૦૦ કરોડને પ્રધાનમંત્રી ગ્રામ સડક યોજના અંતર્ગત યથાવત રાખવામાં આવશે. રૂા. ૬૪,૯૦૦ કરોડ પૈકી રૂા. ૪૬,૯૦૭ કરોડ સેન્ટ્રલ રોડ ફંડમાંથી લેવામાં આવશે, તેવી જ રીતે રૂા. ૮,૫૦૦ કરોડ મહેસૂલમાંથી અને રૂા. ૯,૪૯૪ કરોડ વધારાના અંદાજપત્રિય સહાય તરીકે આવેલ છે. તેમ નાણાંપ્રધાને જણાવ્યું હતું.¹⁰ આ ઉપરાંત નેશનલ હાઇવેઝ પ્રોગ્રામ (NHDP) માટે રૂા. ૨૩,૮૯૨ કરોડનો ઉપયોગ કરવાની યોજના છે. અને કોસ્ટલ કેનેકટીવિટીને ધ્યાનમાં રાખીને ૨,૦૦૦ કિલોમીટરનો રસ્તો વિકસાવવામાં આવશે. આ સાથે રૂા. ૧,૬૮,૪૭૭

^{1.} ઘી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ર તા. ૦૮/૦૨/૨૦૧૭

^{2.} સૂર્યા સારથી, ઘી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ર, તા. ૧૦/૦૨/૨૦૧૭

કરોડની રકમ રિન્યુએબલ એનર્જી, નવી એનર્જી, જળ સંશોધન, નદીઓના વિકાસ, શહેરી વિકાસ, પીવાનું શુધ્ધપાણી તેમજ જન સુખાકારી ઉપર ખર્ચ કરવામાં આવશે. આની સાથે વીજ અને શિપિંગ ક્ષેત્રમાં અનુક્રમે ૫૧ ટકા અને ૧૬ ટકાની ફાળવણી કરવામાં આવી છે. જે રોજગારીની દ્રષ્ટિએ આવકારદાયક છે. ૨૦૧૭–૨૦૧૮માં મૂડી ખર્ચ જે થશે તેમાંથી ૧.૨૪ ટકા જાહેર સાહસોના આંતરિક અને બાહય સંશોધનોમાંથી લેવામાં આવશે.¹¹

વર્ષ ૨૦૧૭–૨૦૧૮ના બજેટમાં સેક્ટીનેટમાં રૂા. ૧,૯૩,૩૩૯ કરોડ માંથી રૂા. ૪૮,૦૦૦ કરોડ મનરેગા પ્રોજેક્ટ પાછળ ખર્ચ કરવામાં આવનાર છે જે ગયા વર્ષની સરખામણીએ તો ૨૫ ટકા વધારે છે એટલે કે ગયા વર્ષ આ પ્રોજેક્ટ પાછળ રૂા. ૩૮,૫૦૦ કરોડ ફાળવવામાં આવ્યા હતા. 2 જયારે રૂા. ૧,૪૫,૩૩૯ કરોડ ફૂડ સબસીડી પાછળ ખર્ચ કરવામાં આવશે. તેવી જ રીતે ઇનપૂટ સબસીડીઝમાં રૂા. ૯૪,૦૦૦ કરોડની ફાળવણી કરી છે. જેમાં રૂા. ૯,૦૦૦ કરોડ પાક વીમા માટે, રૂા. ૧૫,૦૦૦ કરોડની સબસીડી ખેડૂતોના ટૂંકાગાળાની શાખ માટેનું વ્યાજ અને રૂા. ૭૦,૦૦૦ કરોડ ખાતર ઉપર સબસીડી આપવાની છે. જયારે રોકાણ માટે રૂા. ૩૮,૯૦૩ કરોડની ફાળવણીમાં રૂા. ૯૧૨ કરોડ ખેતીમાં વિસ્તૃતીકરણ, રૂા. ૪,૮૧૪ કરોડ દિન દયાલ ઉપાધ્યાય ગ્રામ જયોતિ યોજના માટે, રૂા. ૭,૩૩૭ કરોડ પ્રધાનમંત્રી કૃષિ શિક્ષા યોજના માટે, રૂા. ૧૯,૦૦૦ પ્રધાનમંત્રી ગ્રામ સડક યોજનામાં (PMGSY) અને રૂા. ૬,૮૦૦ કરોડ ખેતીમાં સંશોધન અને શિક્ષણ પાછળ વાપરવામાં આવશે તેવું નાણાંમંત્રીએ જણાવ્યું છે. 10 વર્ષ

આ ઉપરાંત રિયલ એસ્ટેટ માટે લોગ ટર્મ કેપિટલ ગેઈનની સમય મર્યાદા ૩ વર્ષથી ર વર્ષ કરી છે. એટલે કે પ્રોપર્ટી ખરીદવા માટે ત્રણ વર્ષ પૂરા થયાં પહેલા પર શોર્ટ ટર્મ કેપિટલ ગેઈન ટેકસ, તમારી આવક ઉપર પ્રમાણે લાગતો હતો. પરંતુ હવે બે વર્ષ કરવાથી તમારે લોન્ગ ટર્મ કેપિટલ ગેઈન ટેકસ લાગશે. જે તમારી બીજી પ્રોપર્ટી અથવા બોન્ડમાં લગાવીને બચાવી શકાય છે. સ્ટીલ ઉદ્યોગની વાત કરીએ તો વર્ષ ૨૦૧૭–૧૮ના અંદાજપત્રમાં સ્ટીલ ઉદ્યોગને ખાસ છૂટછાટ નહીં આપવાનું કારણ એ હોઇ શકે કે હવે સ્ટીલ ઉદ્યોગ નિકાસકાર તરીકે ઉભરી રહયો છે. જે આંકડાકીય માહિતી ઉપરથી સ્પષ્ટ થાય છે. ચાલુ નાણાકીય વર્ષના એપ્રિલ મહિના થી જાન્યુઆરીના સમયગાળામાં ભારતે ૬.૧ મિલિયન ટન સ્ટીલની આયાત કરી હતી. જેની સામે નિકાસ ૫.૮૭ મિલિયન ટન રહયું હતું. એટલેકે આ સમયગાળા દરમ્યાન નિકાસોમાં ૭૧.૧ ટકાનો નોંધપાત્ર વધારો થયો છે અને આયાતોમાં ૩૭.૮ ટકાનો ઘટાડો નોંધાયો છે. જે જોઇન્ટ પ્લાન્ટ કમિટિના અહેવાલ ઉપરથી સ્પષ્ટ થાય છે. ભારતની સ્ટીલ ઉત્પાદનની રૂપરેખા જોઈએ તો એપ્રિલ–૧૬ થી જાન્યુઆરી ૨૦૧૭ સુધીમાં ૮૦.૬૨ મિલિયન ટન સ્ટીલનું ઉત્પાદન ભારતમાં થયેલું છે

^{3.} સુશીમ બેનર્જી, ઘી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ર તા. ૦૮/૦૨/૨૦૧૭

^{4.} 'દિવ્ય ભાસ્કર' દૈનિક સમાચાર પત્ર, પાન નં. ૩ તા. ૦૨/૦૨/૨૦૧૭

^{5.} ઘી ફાઇનાન્સિયલ એકપ્રેસ, પાન નં. ૩ તા. ૧૩/૦૨/૨૦૧૭

અને તેની વપરાશ આ સમયગાળા દરમ્યાન ૬૮.૩૯ મિલિયન ટન હતી એટલે કે ૯ ટકા સ્ટીલ ઉત્પાદનમાં વધારો અને ૩.૫ ટકા વપરાશમાં વધારો થયેલો જોવા મળે છે. જે ગયા વર્ષેની સરખામણી કરતા માલુમ પડે છે. તેથી પરિણામ એ આવશે કેસ્ટલિ પ્રોડકટ સસ્તી થઇ શકે છે. સ્ટીલ બનાવવામાં ઉપયોગમાં લેવાતા ગેસ પર આયાત ચાર્જ પાંચ ટકાથી ઘટાડીને અઢી ટકા કરી દેવામાં આવ્યો છે. નિકલ ઉપર અઢી ટકા ઈમ્પોર્ટ ડયુટી હટાવી લેવાઈ છે. ઉપરાંત નિકલ ઉપરથી બેઝિક કસ્ટમ ૨.૫ ટકાથી ઘટાડી શૂન્ય કરાઇ છે. તેના કારણે સ્ટીલ ઉત્પાદન માટેનો કાચો માલ સસ્તો થશે. કારણ કે નિકલનો ઉપયોગ સ્ટેનલેસ સ્ટીલમાં થાય છે. સાથે સાથે ખર્ચ ઘટવાથી પ્રોડકટ સસ્તી થશે પરિણામે માંગમાં વધારો થઇ શકે છે. તદઉપરાંત મેગ્નેશિયમ કોટેડ ઉપર સીઆર ક્વોઇલ પરની કસ્ટમ ડયુટી પાંચ ટકા અને એચ આર કોઈલ ઉપર ૧૦ ટકા કરી દેવામાં આવી છે.

PUBLISHED BY

http://www.hsccresearchejournal.org/

HEAD QUARTER

Shree H.S.Shah College Of Commerce, Modasa Dist-Arrvalli